
DeePMD-kit

Apr 20, 2021

Contents:

1 Easy installation methods 3
1.1 Offline packages . 3
1.2 With conda . 3
1.3 With Docker . 3

2 From source code 5
2.1 Install the python interface . 5
2.2 Install the C++ interface . 7
2.3 Hardware platforms . 8

3 Use DeePMD-kit 11
3.1 Prepare data . 11
3.2 Train a model . 12
3.3 Freeze a model . 16
3.4 Test a model . 16
3.5 Compress a model . 17
3.6 Model inference . 18
3.7 Run MD with LAMMPS . 18
3.8 Run path-integral MD with i-PI . 19
3.9 Use deep potential with ASE . 19

4 Training parameters 21

5 pair_style deepmd command 39
5.1 Syntax . 39
5.2 Examples . 39
5.3 Description . 39
5.4 Restrictions . 40

6 Novel Auxiliary Options 41
6.1 Type embedding . 41
6.2 Interpolation with tabulated pair potentials . 41

7 DeePMD-kit TensorBoard usage 43
7.1 Highlighted features . 43
7.2 How to use Tensorboard with DeePMD-kit . 43
7.3 Examples . 44

i

7.4 Atention . 49

8 DeePMD-kit API 51

9 Coding Conventions 53
9.1 Preface . 53
9.2 Rules . 53
9.3 Whitespace . 54
9.4 General advice . 54
9.5 Writing documentation in the code . 55
9.6 Run pycodestyle on your code . 55
9.7 Run mypy on your code . 55
9.8 Run pydocstyle on your code . 55
9.9 Run black on your code . 55

10 Application Examples 57
10.1 Dipole and polarizability model training . 57
10.2 Training with non-periodic systems . 57
10.3 MD on different hardware platforms . 57

11 Indices and tables 59

Python Module Index 61

Index 63

ii

DeePMD-kit

• Easy installation methods

– Offline packages

– With Docker

– With conda

• From source code

– Install the python interaction

* Install the Tensorflow’s python interface

* Install the DeePMD-kit’s python interface

– Install the C++ interface

* Install the Tensorflow’s C++ interface

* Install the DeePMD-kit’s C++ interface

* Install LAMMPS’s DeePMD-kit module

– Hardware platforms

Contents: 1

DeePMD-kit

2 Contents:

CHAPTER 1

Easy installation methods

There various easy methods to install DeePMD-kit. Choose one that you prefer. If you want to build by yourself, jump
to the next two sections.

After your easy installation, DeePMD-kit (dp) and LAMMPS (lmp) will be available to execute. You can try dp -h
and lmp -h to see the help. mpirun is also available considering you may want to run LAMMPS in parallel.

1.1 Offline packages

Both CPU and GPU version offline packages are avaiable in the Releases page.

1.2 With conda

DeePMD-kit is avaiable with conda. Install Anaconda or Miniconda first.

To install the CPU version:

conda install deepmd-kit=*=*cpu lammps-dp=*=*cpu -c deepmodeling

To install the GPU version containing CUDA 10.1:

conda install deepmd-kit=*=*gpu lammps-dp=*=*gpu -c deepmodeling

1.3 With Docker

A docker for installing the DeePMD-kit is available here.

To pull the CPU version:

3

https://github.com/deepmodeling/deepmd-kit/releases
https://github.com/conda/conda
https://www.anaconda.com/distribution/#download-section
https://docs.conda.io/en/latest/miniconda.html
https://docs.nvidia.com/deploy/cuda-compatibility/index.html#binary-compatibility__table-toolkit-driver
https://github.com/orgs/deepmodeling/packages/container/package/deepmd-kit

DeePMD-kit

docker pull ghcr.io/deepmodeling/deepmd-kit:1.3.1_cpu

To pull the GPU version:

docker pull ghcr.io/deepmodeling/deepmd-kit:1.3.1_cuda10.1_gpu

4 Chapter 1. Easy installation methods

CHAPTER 2

From source code

Please follow our github webpage to download the latest released version and development version.

Or get the DeePMD-kit source code by git clone

cd /some/workspace
git clone --recursive https://github.com/deepmodeling/deepmd-kit.git deepmd-kit

The --recursive option clones all submodules needed by DeePMD-kit.

For convenience, you may want to record the location of source to a variable, saying deepmd_source_dir by

cd deepmd-kit
deepmd_source_dir=`pwd`

2.1 Install the python interface

2.1.1 Install the Tensorflow’s python interface

First, check the python version on your machine

python --version

We follow the virtual environment approach to install the tensorflow’s Python interface. The full instruction can
be found on the tensorflow’s official website. Now we assume that the Python interface will be installed to virtual
environment directory $tensorflow_venv

virtualenv -p python3 $tensorflow_venv
source $tensorflow_venv/bin/activate
pip install --upgrade pip
pip install --upgrade tensorflow==2.3.0

5

https://github.com/deepmodeling/deepmd-kit
https://github.com/deepmodeling/deepmd-kit/tree/master
https://github.com/deepmodeling/deepmd-kit/tree/devel
https://git-scm.com/book/en/v2/Git-Tools-Submodules
https://www.tensorflow.org/install/pip

DeePMD-kit

It is notice that everytime a new shell is started and one wants to use DeePMD-kit, the virtual environment should
be activated by

source $tensorflow_venv/bin/activate

if one wants to skip out of the virtual environment, he/she can do

deactivate

If one has multiple python interpreters named like python3.x, it can be specified by, for example

virtualenv -p python3.7 $tensorflow_venv

If one does not need the GPU support of deepmd-kit and is concerned about package size, the CPU-only version of
tensorflow should be installed by

pip install --upgrade tensorflow-cpu==2.3.0

To verify the installation, run

python -c "import tensorflow as tf;print(tf.reduce_sum(tf.random.normal([1000,
→˓1000])))"

One should remember to activate the virtual environment every time he/she uses deepmd-kit.

2.1.2 Install the DeePMD-kit’s python interface

Execute

cd $deepmd_source_dir
pip install .

To test the installation, one should firstly jump out of the source directory

cd /some/other/workspace

then execute

dp -h

It will print the help information like

usage: dp [-h] {train,freeze,test} ...

DeePMD-kit: A deep learning package for many-body potential energy
representation and molecular dynamics

optional arguments:
-h, --help show this help message and exit

Valid subcommands:
{train,freeze,test}
train train a model
freeze freeze the model
test test the model

6 Chapter 2. From source code

DeePMD-kit

2.2 Install the C++ interface

If one does not need to use DeePMD-kit with Lammps or I-Pi, then the python interface installed in the previous
section does everything and he/she can safely skip this section.

2.2.1 Install the Tensorflow’s C++ interface

Check the compiler version on your machine

gcc --version

The C++ interface of DeePMD-kit was tested with compiler gcc >= 4.8. It is noticed that the I-Pi support is only
compiled with gcc >= 4.9.

First the C++ interface of Tensorflow should be installed. It is noted that the version of Tensorflow should be in
consistent with the python interface. You may follow the instruction to install the corresponding C++ interface.

2.2.2 Install the DeePMD-kit’s C++ interface

Now goto the source code directory of DeePMD-kit and make a build place.

cd $deepmd_source_dir/source
mkdir build
cd build

I assume you want to install DeePMD-kit into path $deepmd_root, then execute cmake

cmake -DTENSORFLOW_ROOT=$tensorflow_root -DCMAKE_INSTALL_PREFIX=$deepmd_root ..

where the variable tensorflow_root stores the location where the tensorflow’s C++ interface is installed. The
DeePMD-kit will automatically detect if a CUDA tool-kit is available on your machine and build the GPU support
accordingly. If you want to force the cmake to find CUDA tool-kit, you can speicify the key USE_CUDA_TOOLKIT,

cmake -DUSE_CUDA_TOOLKIT=true -DTENSORFLOW_ROOT=$tensorflow_root -DCMAKE_INSTALL_
→˓PREFIX=$deepmd_root ..

and you may further asked to provide CUDA_TOOLKIT_ROOT_DIR. If the cmake has executed successfully, then

make
make install

If everything works fine, you will have the following executable and libraries installed in $deepmd_root/bin and
$deepmd_root/lib

$ ls $deepmd_root/bin
dp_ipi
$ ls $deepmd_root/lib
libdeepmd_ipi.so libdeepmd_op.so libdeepmd.so

2.2.3 Install LAMMPS’s DeePMD-kit module

DeePMD-kit provide module for running MD simulation with LAMMPS. Now make the DeePMD-kit module for
LAMMPS.

2.2. Install the C++ interface 7

install-tf.2.3

DeePMD-kit

cd $deepmd_source_dir/source/build
make lammps

DeePMD-kit will generate a module called USER-DEEPMD in the build directory. Now download the LAMMPS
code (29Oct2020 or later), and uncompress it:

cd /some/workspace
wget https://github.com/lammps/lammps/archive/stable_29Oct2020.tar.gz
tar xf stable_29Oct2020.tar.gz

The source code of LAMMPS is stored in directory lammps-stable_29Oct2020. Now go into the LAMMPS
code and copy the DeePMD-kit module like this

cd lammps-stable_29Oct2020/src/
cp -r $deepmd_source_dir/source/build/USER-DEEPMD .

Now build LAMMPS

make yes-kspace
make yes-user-deepmd
make mpi -j4

The option -j4 means using 4 processes in parallel. You may want to use a different number according to your
hardware.

If everything works fine, you will end up with an executable lmp_mpi.

./lmp_mpi -h

The DeePMD-kit module can be removed from LAMMPS source code by

make no-user-deepmd

2.3 Hardware platforms

• Use DeePMD-kit

– Prepare data

– Train a model

* The DeePMD model

* The DeepPot-SE model

– Freeze a model

– Test a model

– Compress a model

– Model inference

– Run MD with Lammps

* Include deepmd in the pair style

* Long-range interaction

– Run path-integral MD with i-PI

8 Chapter 2. From source code

DeePMD-kit

– Use deep potential with ASE

2.3. Hardware platforms 9

DeePMD-kit

10 Chapter 2. From source code

CHAPTER 3

Use DeePMD-kit

In this text, we will call the deep neural network that is used to represent the interatomic interactions (Deep Potential)
the model. The typical procedure of using DeePMD-kit is

1. Prepare data

2. Train a model

3. Freeze the model

4. Test the model

5. Compress the model

6. Inference with the model

3.1 Prepare data

One needs to provide the following information to train a model: the atom type, the simulation box, the atom coor-
dinate, the atom force, system energy and virial. A snapshot of a system that contains these information is called a
frame. We use the following convention of units:

Property| Unit — | :—: Time | ps Length | Å Energy | eV Force | eV/Å Virial | eV Pressure| Bar

The frames of the system are stored in two formats. A raw file is a plain text file with each information item written
in one file and one frame written on one line. The default files that provide box, coordinate, force, energy and virial
are box.raw, coord.raw, force.raw, energy.raw and virial.raw, respectively. We recommend you use
these file names. Here is an example of force.raw:

$ cat force.raw
-0.724 2.039 -0.951 0.841 -0.464 0.363
6.737 1.554 -5.587 -2.803 0.062 2.222

-1.968 -0.163 1.020 -0.225 -0.789 0.343

This force.raw contains 3 frames with each frame having the forces of 2 atoms, thus it has 3 lines and 6 columns.
Each line provides all the 3 force components of 2 atoms in 1 frame. The first three numbers are the 3 force components

11

DeePMD-kit

of the first atom, while the second three numbers are the 3 force components of the second atom. The coordinate file
coord.raw is organized similarly. In box.raw, the 9 components of the box vectors should be provided on each
line. In virial.raw, the 9 components of the virial tensor should be provided on each line in the order XX XY XZ
YX YY YZ ZX ZY ZZ. The number of lines of all raw files should be identical.

We assume that the atom types do not change in all frames. It is provided by type.raw, which has one line with the
types of atoms written one by one. The atom types should be integers. For example the type.raw of a system that
has 2 atoms with 0 and 1:

$ cat type.raw
0 1

The second format is the data sets of numpy binary data that are directly used by the training program. User can use
the script $deepmd_source_dir/data/raw/raw_to_set.sh to convert the prepared raw files to data sets.
For example, if we have a raw file that contains 6000 frames,

$ ls
box.raw coord.raw energy.raw force.raw type.raw virial.raw
$ $deepmd_source_dir/data/raw/raw_to_set.sh 2000
nframe is 6000
nline per set is 2000
will make 3 sets
making set 0 ...
making set 1 ...
making set 2 ...
$ ls
box.raw coord.raw energy.raw force.raw set.000 set.001 set.002 type.raw
→˓virial.raw

It generates three sets set.000, set.001 and set.002, with each set contains 2000 frames. The last set (set.
002) is used as testing set, while the rest sets (set.000 and set.001) are used as training sets. One do not need
to take care of the binary data files in each of the set.* directories. The path containing set.* and type.raw is
called a system.

3.2 Train a model

3.2.1 Write the input script

The method of training is explained in our [DeePMD][2] and [DeepPot-SE][3] papers. With the source code we
provide a small training dataset taken from 400 frames generated by NVT ab-initio water MD trajectory with 300
frames for training and 100 for testing. An example training parameter file is provided. One can try with the training
by

$ cd $deepmd_source_dir/examples/water/train/
$ dp train water_se_a.json

where water_se_a.json is the json format parameter file that controls the training. It is also possible to use
yaml format file with the same keys as json (see water_se_a.yaml example). You can use script json2yaml.
py in data/json/ dir to convert your json files to yaml. The components of the water.json contains four parts,
model, learning_rate, loss and training.

The model section specify how the deep potential model is built. An example of the smooth-edition is provided as
follows

12 Chapter 3. Use DeePMD-kit

./examples/water/train/water_se_a.json

DeePMD-kit

"model": {
"type_map": ["O", "H"],
"descriptor" :{

"type": "se_a",
"rcut_smth": 5.80,
"rcut": 6.00,
"sel": [46, 92],
"neuron": [25, 50, 100],
"axis_neuron": 16,
"resnet_dt": false,
"seed": 1,
"_comment": " that's all"

},
"fitting_net" : {

"neuron": [240, 240, 240],
"resnet_dt": true,
"seed": 1,
"_comment": " that's all"

},
"_comment": " that's all"

}

The type_map is optional, which provide the element names (but not restricted to) for corresponding atom types.

The construction of the descriptor is given by option descriptor. The type of the descriptor is set to "se_a",
which means smooth-edition, angular infomation. The rcut is the cut-off radius for neighbor searching, and the
rcut_smth gives where the smoothing starts. sel gives the maximum possible number of neighbors in the cut-off
radius. It is a list, the length of which is the same as the number of atom types in the system, and sel[i] denote
the maximum possible number of neighbors with type i. The neuron specifies the size of the embedding net. From
left to right the members denote the sizes of each hidden layers from input end to the output end, respectively. The
axis_neuron specifies the size of submatrix of the embedding matrix, the axis matrix as explained in the [DeepPot-
SE paper][3]. If the outer layer is of twice size as the inner layer, then the inner layer is copied and concatenated, then
a ResNet architecture is build between them. If the option resnet_dt is set true, then a timestep is used in the
ResNet. seed gives the random seed that is used to generate random numbers when initializing the model parameters.

The construction of the fitting net is give by fitting_net. The key neuron specifies the size of the fitting
net. If two neighboring layers are of the same size, then a ResNet architecture is build between them. If the option
resnet_dt is set true, then a timestep is used in the ResNet. seed gives the random seed that is used to generate
random numbers when initializing the model parameters.

An example of the learning_rate is given as follows

"learning_rate" :{
"type": "exp",
"start_lr": 0.005,
"decay_steps": 5000,
"decay_rate": 0.95,
"_comment": "that's all"

}

The option start_lr, decay_rate and decay_steps specify how the learning rate changes. For example, the
tth batch will be trained with learning rate:

lr(t) = start_lr * decay_rate ^ (t / decay_steps)

An example of the loss is

3.2. Train a model 13

https://arxiv.org/abs/1512.03385
https://arxiv.org/abs/1512.03385

DeePMD-kit

"loss" : {
"start_pref_e": 0.02,
"limit_pref_e": 1,
"start_pref_f": 1000,
"limit_pref_f": 1,
"start_pref_v": 0,
"limit_pref_v": 0,
"_comment": " that's all"

}

The options start_pref_e, limit_pref_e, start_pref_f, limit_pref_f, start_pref_v and
limit_pref_v determine how the prefactors of energy error, force error and virial error changes in the loss function
(see the appendix of the [DeePMD paper][2] for details). Taking the prefactor of force error for example, the prefactor
at batch t is

w_f(t) = start_pref_f * (lr(t) / start_lr) + limit_pref_f * (1 - lr(t) / start_lr)

Since we do not have virial data, the virial prefactors start_pref_v and limit_pref_v are set to 0.

An example of training is

"training" : {
"systems": ["../data1/", "../data2/"],
"set_prefix": "set",
"stop_batch": 1000000,
"_comment": " batch_size can be supplied with, e.g. 1, or auto (string) or

→˓[10, 20]",
"batch_size": 1,

"seed": 1,

"_comment": " display and restart",
"_comment": " frequencies counted in batch",
"disp_file": "lcurve.out",
"disp_freq": 100,
"_comment": " numb_test can be supplied with, e.g. 1, or XX% (string) or [10,

→˓20]",
"numb_test": 10,
"save_freq": 1000,
"save_ckpt": "model.ckpt",
"load_ckpt": "model.ckpt",
"disp_training":true,
"time_training":true,
"profiling": false,
"profiling_file":"timeline.json",
"_comment": "that's all"

}

The option systems provide location of the systems (path to set.* and type.raw). It is a vector, thus DeePMD-
kit allows you to provide multiple systems. DeePMD-kit will train the model with the systems in the vector one by
one in a cyclic manner. It is warned that the example water data (in folder examples/data/water) is of very
limited amount, is provided only for testing purpose, and should not be used to train a productive model.

The option batch_size specifies the number of frames in each batch. It can be set to "auto" to enable a automatic
batch size or it can be input as a list setting batch size individually for each system. The option stop_batch specifies
the total number of batches will be used in the training.

The option numb_test specifies the number of tests that will be used for each system. If it is an integer each system

14 Chapter 3. Use DeePMD-kit

DeePMD-kit

will be tested with the same number of tests. It can be set to percentage "XX%" to use XX% of frames of each system
for its testing or it can be input as a list setting numer of tests individually for each system (the order should correspond
to ordering of the systems key in json).

3.2.2 Training

The training can be invoked by

$ dp train water_se_a.json

During the training, the error of the model is tested every disp_freq batches with numb_test frames from the
last set in the systems directory on the fly, and the results are output to disp_file. A typical disp_file looks
like

batch l2_tst l2_trn l2_e_tst l2_e_trn l2_f_tst l2_f_trn lr
0 2.67e+01 2.57e+01 2.21e-01 2.22e-01 8.44e-01 8.12e-01 1.0e-03

100 6.14e+00 5.40e+00 3.01e-01 2.99e-01 1.93e-01 1.70e-01 1.0e-03
200 5.02e+00 4.49e+00 1.53e-01 1.53e-01 1.58e-01 1.42e-01 1.0e-03
300 4.36e+00 3.71e+00 7.32e-02 7.27e-02 1.38e-01 1.17e-01 1.0e-03
400 4.04e+00 3.29e+00 3.16e-02 3.22e-02 1.28e-01 1.04e-01 1.0e-03

The first column displays the number of batches. The second and third columns display the loss function evaluated
by numb_test frames randomly chosen from the test set and that evaluated by the current training batch, respec-
tively. The fourth and fifth columns display the RMS energy error (normalized by number of atoms) evaluated by
numb_test frames randomly chosen from the test set and that evaluated by the current training batch, respectively.
The sixth and seventh columns display the RMS force error (component-wise) evaluated by numb_test frames ran-
domly chosen from the test set and that evaluated by the current training batch, respectively. The last column displays
the current learning rate.

Checkpoints will be written to files with prefix save_ckpt every save_freq batches. If restart is set to true,
then the training will start from the checkpoint named load_ckpt, rather than from scratch.

Several command line options can be passed to dp train, which can be checked with

$ dp train --help

An explanation will be provided

positional arguments:
INPUT the input json database

optional arguments:
-h, --help show this help message and exit
--init-model INIT_MODEL

Initialize a model by the provided checkpoint
--restart RESTART Restart the training from the provided checkpoint

The keys intra_op_parallelism_threads and inter_op_parallelism_threads are Tensorflow
configurations for multithreading, which are explained here. Skipping -t and OMP_NUM_THREADS leads to the
default setting of these keys in the Tensorflow.

--init-model model.ckpt, for example, initializes the model training with an existing model that is stored in
the checkpoint model.ckpt, the network architectures should match.

--restart model.ckpt, continues the training from the checkpoint model.ckpt.

On some resources limited machines, one may want to control the number of threads used by DeePMD-kit. This
is achieved by three environmental variables: OMP_NUM_THREADS, TF_INTRA_OP_PARALLELISM_THREADS

3.2. Train a model 15

https://www.tensorflow.org/performance/performance_guide#optimizing_for_cpu

DeePMD-kit

and TF_INTER_OP_PARALLELISM_THREADS. OMP_NUM_THREADS controls the multithread-
ing of DeePMD-kit implemented operations. TF_INTRA_OP_PARALLELISM_THREADS and
TF_INTER_OP_PARALLELISM_THREADS controls intra_op_parallelism_threads and
inter_op_parallelism_threads, which are Tensorflow configurations for multithreading. An expla-
nation is found here.

For example if you wish to use 3 cores of 2 CPUs on one node, you may set the environmental variables and run
DeePMD-kit as follows:

export OMP_NUM_THREADS=6
export TF_INTRA_OP_PARALLELISM_THREADS=3
export TF_INTER_OP_PARALLELISM_THREADS=2
dp train input.json

3.2.3 Training analysis with Tensorboard

If enbled in json/yaml input file DeePMD-kit will create log files which can be used to analyze training procedure with
Tensorboard. For a short tutorial please read this document.

3.3 Freeze a model

The trained neural network is extracted from a checkpoint and dumped into a database. This process is called “freez-
ing” a model. The idea and part of our code are from Morgan. To freeze a model, typically one does

$ dp freeze -o graph.pb

in the folder where the model is trained. The output database is called graph.pb.

3.4 Test a model

The frozen model can be used in many ways. The most straightforward test can be performed using dp test. A
typical usage of dp test is

dp test -m graph.pb -s /path/to/system -n 30

where -m gives the tested model, -s the path to the tested system and -n the number of tested frames. Several other
command line options can be passed to dp test, which can be checked with

$ dp test --help

An explanation will be provided

usage: dp test [-h] [-m MODEL] [-s SYSTEM] [-S SET_PREFIX] [-n NUMB_TEST]
[-r RAND_SEED] [--shuffle-test] [-d DETAIL_FILE]

optional arguments:
-h, --help show this help message and exit
-m MODEL, --model MODEL

Frozen model file to import
-s SYSTEM, --system SYSTEM

The system dir

(continues on next page)

16 Chapter 3. Use DeePMD-kit

https://stackoverflow.com/questions/41233635/meaning-of-inter-op-parallelism-threads-and-intra-op-parallelism-threads
https://blog.metaflow.fr/tensorflow-how-to-freeze-a-model-and-serve-it-with-a-python-api-d4f3596b3adc

DeePMD-kit

(continued from previous page)

-S SET_PREFIX, --set-prefix SET_PREFIX
The set prefix

-n NUMB_TEST, --numb-test NUMB_TEST
The number of data for test

-r RAND_SEED, --rand-seed RAND_SEED
The random seed

--shuffle-test Shuffle test data
-d DETAIL_FILE, --detail-file DETAIL_FILE

The file containing details of energy force and virial
accuracy

3.5 Compress a model

Once the frozen model is obtained from deepmd-kit, we can get the neural network structure and its parameters
(weights, biases, etc.) from the trained model, and compress it in the following way:

dp compress input.json -i graph.pb -o graph-compress.pb

where input.json denotes the original training input script, -i gives the original frozen model, -o gives the compressed
model. Several other command line options can be passed to dp compress, which can be checked with

$ dp compress --help

An explanation will be provided

usage: dp compress [-h] [-i INPUT] [-o OUTPUT] [-e EXTRAPOLATE] [-s STRIDE]
[-f FREQUENCY] [-d FOLDER]
INPUT

positional arguments:
INPUT The input parameter file in json or yaml format, which

should be consistent with the original model parameter
file

optional arguments:
-h, --help show this help message and exit
-i INPUT, --input INPUT

The original frozen model, which will be compressed by
the deepmd-kit

-o OUTPUT, --output OUTPUT
The compressed model

-e EXTRAPOLATE, --extrapolate EXTRAPOLATE
The scale of model extrapolation

-s STRIDE, --stride STRIDE
The uniform stride of tabulation's first table, the
second table will use 10 * stride as it's uniform
stride

-f FREQUENCY, --frequency FREQUENCY
The frequency of tabulation overflow check(If the
input environment matrix overflow the first or second
table range). By default do not check the overflow

-d FOLDER, --folder FOLDER
path to checkpoint folder

Parameter explanation

3.5. Compress a model 17

DeePMD-kit

Model compression, which including tabulating the embedding-net. The table is composed of fifth-order polynomial
coefficients and is assembled from two sub-tables. The first sub-table takes the stride(parameter) as it’s uniform stride,
while the second sub-table takes 10 * stride as it’s uniform stride. The range of the first table is automatically detected
by deepmd-kit, while the second table ranges from the first table’s upper boundary(upper) to the extrapolate(parameter)
* upper. Finally, we added a check frequency parameter. It indicates how often the program checks for overflow(if the
input environment matrix overflow the first or second table range) during the MD inference.

Justification of model compression

Model compression, with little loss of accuracy, can greatly speed up MD inference time. According to different
simulation systems and training parameters, the speedup can reach more than 10 times at both CPU and GPU devices.
At the same time, model compression can greatly change the memory usage, reducing as much as 20 times under the
same hardware conditions.

Acceptable original model version

The model compression method requires that the version of DeePMD-kit used in original model generation should be
1.3 or above. If one has a frozen 1.2 model, one can first use the convenient conversion interface of DeePMD-kit-v1.2.4
to get a 1.3 executable model.(eg: dp convert-to-1.3 -i frozen_1.2.pb -o frozen_1.3.pb)

3.6 Model inference

One may use the python interface of DeePMD-kit for model inference, an example is given as follows

from deepmd import DeepPot
import numpy as np
dp = DeepPot('graph.pb')
coord = np.array([[1,0,0], [0,0,1.5], [1,0,3]]).reshape([1, -1])
cell = np.diag(10 * np.ones(3)).reshape([1, -1])
atype = [1,0,1]
e, f, v = dp.eval(coord, cell, atype)

where e, f and v are predicted energy, force and virial of the system, respectively.

3.7 Run MD with LAMMPS

3.7.1 Include deepmd in the pair style

Running an MD simulation with LAMMPS is simpler. In the LAMMPS input file, one needs to specify the pair style
as follows

pair_style deepmd graph.pb
pair_coeff

where graph.pb is the file name of the frozen model. The pair_coeff should be left blank. It should be noted
that LAMMPS counts atom types starting from 1, therefore, all LAMMPS atom type will be firstly subtracted by 1,
and then passed into the DeePMD-kit engine to compute the interactions. A detailed documentation of this pair style
is available..

3.7.2 Long-range interaction

The reciprocal space part of the long-range interaction can be calculated by LAMMPS command kspace_style.
To use it with DeePMD-kit, one writes

18 Chapter 3. Use DeePMD-kit

DeePMD-kit

pair_style deepmd graph.pb
pair_coeff
kspace_style pppm 1.0e-5
kspace_modify gewald 0.45

Please notice that the DeePMD does nothing to the direct space part of the electrostatic interaction, because this part
is assumed to be fitted in the DeePMD model (the direct space cut-off is thus the cut-off of the DeePMD model). The
splitting parameter gewald is modified by the kspace_modify command.

3.8 Run path-integral MD with i-PI

The i-PI works in a client-server model. The i-PI provides the server for integrating the replica positions of atoms,
while the DeePMD-kit provides a client named dp_ipi that computes the interactions (including energy, force and
virial). The server and client communicates via the Unix domain socket or the Internet socket. The client can be
started by

$ dp_ipi water.json

It is noted that multiple instances of the client is allow for computing, in parallel, the interactions of multiple replica
of the path-integral MD.

water.json is the parameter file for the client dp_ipi, and an example is provided:

{
"verbose": false,
"use_unix": true,
"port": 31415,
"host": "localhost",
"graph_file": "graph.pb",
"coord_file": "conf.xyz",
"atom_type" : {

"OW": 0,
"HW1": 1,
"HW2": 1

}
}

The option use_unix is set to true to activate the Unix domain socket, otherwise, the Internet socket is used.

The option graph_file provides the file name of the frozen model.

The dp_ipi gets the atom names from an XYZ file provided by coord_file (meanwhile ignores all coordinates
in it), and translates the names to atom types by rules provided by atom_type.

3.9 Use deep potential with ASE

Deep potential can be set up as a calculator with ASE to obtain potential energies and forces.

from ase import Atoms
from deepmd.calculator import DP

water = Atoms('H2O',
positions=[(0.7601, 1.9270, 1),

(continues on next page)

3.8. Run path-integral MD with i-PI 19

./examples/ipi/water.json
https://en.wikipedia.org/wiki/XYZ_file_format

DeePMD-kit

(continued from previous page)

(1.9575, 1, 1),
(1., 1., 1.)],

cell=[100, 100, 100],
calculator=DP(model="frozen_model.pb"))

print(water.get_potential_energy())
print(water.get_forces())

Optimization is also available:

from ase.optimize import BFGS
dyn = BFGS(water)
dyn.run(fmax=1e-6)
print(water.get_positions())

20 Chapter 3. Use DeePMD-kit

CHAPTER 4

Training parameters

model:

type: dict
argument path: model

type_map:

type: list, optional
argument path: model/type_map

A list of strings. Give the name to each type of atoms.

data_stat_nbatch:

type: int, optional, default: 10
argument path: model/data_stat_nbatch

The model determines the normalization from the statistics of the data. This key specifies the number of
frames in each system used for statistics.

data_stat_protect:

type: float, optional, default: 0.01
argument path: model/data_stat_protect

Protect parameter for atomic energy regression.

use_srtab:

type: str, optional
argument path: model/use_srtab

The table for the short-range pairwise interaction added on top of DP. The table is a text data file with (N_t
+ 1) * N_t / 2 + 1 columes. The first colume is the distance between atoms. The second to the last columes
are energies for pairs of certain types. For example we have two atom types, 0 and 1. The columes from
2nd to 4th are for 0-0, 0-1 and 1-1 correspondingly.

smin_alpha:

21

DeePMD-kit

type: float, optional
argument path: model/smin_alpha

The short-range tabulated interaction will be swithed according to the distance of the nearest neighbor.
This distance is calculated by softmin. This parameter is the decaying parameter in the softmin. It is only
required when use_srtab is provided.

sw_rmin:

type: float, optional
argument path: model/sw_rmin

The lower boundary of the interpolation between short-range tabulated interaction and DP. It is only re-
quired when use_srtab is provided.

sw_rmax:

type: float, optional
argument path: model/sw_rmax

The upper boundary of the interpolation between short-range tabulated interaction and DP. It is only re-
quired when use_srtab is provided.

descriptor:

type: dict
argument path: model/descriptor

The descriptor of atomic environment.

Depending on the value of type, different sub args are accepted.

type:

type: str (flag key)
argument path: model/descriptor/type

The type of the descritpor. Valid types are loc_frame, se_a, se_r, se_a_3be, se_a_tpe, hybrid.

• loc_frame: Defines a local frame at each atom, and the compute the descriptor as local coordinates
under this frame.

• se_a: Used by the smooth edition of Deep Potential. The full relative coordinates are used to
construct the descriptor.

• se_r: Used by the smooth edition of Deep Potential. Only the distance between atoms is used to
construct the descriptor.

• se_a_3be: Used by the smooth edition of Deep Potential. The full relative coordinates are used
to construct the descriptor. Three-body embedding will be used by this descriptor.

• se_a_tpe: Used by the smooth edition of Deep Potential. The full relative coordinates are used to
construct the descriptor. Type embedding will be used by this descriptor.

• hybrid: Concatenate of a list of descriptors as a new descriptor.

• se_ar: A hybrid of se_a and se_r. Typically se_a has a smaller cut-off while the se_r has a larger
cut-off. Deprecated, use hybrid instead.

When type is set to loc_frame:

sel_a:

type: list
argument path: model/descriptor[loc_frame]/sel_a

22 Chapter 4. Training parameters

DeePMD-kit

A list of integers. The length of the list should be the same as the number of atom types in the system.
sel_a[i] gives the selected number of type-i neighbors. The full relative coordinates of the neighbors
are used by the descriptor.

sel_r:

type: list
argument path: model/descriptor[loc_frame]/sel_r

A list of integers. The length of the list should be the same as the number of atom types in the system.
sel_r[i] gives the selected number of type-i neighbors. Only relative distance of the neighbors are
used by the descriptor. sel_a[i] + sel_r[i] is recommended to be larger than the maximally possible
number of type-i neighbors in the cut-off radius.

rcut:

type: float, optional, default: 6.0
argument path: model/descriptor[loc_frame]/rcut

The cut-off radius. The default value is 6.0

axis_rule:

type: list
argument path: model/descriptor[loc_frame]/axis_rule

A list of integers. The length should be 6 times of the number of types.

• axis_rule[i*6+0]: class of the atom defining the first axis of type-i atom. 0 for neighbors with full
coordinates and 1 for neighbors only with relative distance.

• axis_rule[i*6+1]: type of the atom defining the first axis of type-i atom.

• axis_rule[i*6+2]: index of the axis atom defining the first axis. Note that the neighbors with the
same class and type are sorted according to their relative distance.

• axis_rule[i*6+3]: class of the atom defining the first axis of type-i atom. 0 for neighbors with full
coordinates and 1 for neighbors only with relative distance.

• axis_rule[i*6+4]: type of the atom defining the second axis of type-i atom.

• axis_rule[i*6+5]: class of the atom defining the second axis of type-i atom. 0 for neighbors with
full coordinates and 1 for neighbors only with relative distance.

When type is set to se_a:

sel:

type: list
argument path: model/descriptor[se_a]/sel

A list of integers. The length of the list should be the same as the number of atom types in the system.
sel[i] gives the selected number of type-i neighbors. sel[i] is recommended to be larger than the
maximally possible number of type-i neighbors in the cut-off radius.

rcut:

type: float, optional, default: 6.0
argument path: model/descriptor[se_a]/rcut

The cut-off radius.

rcut_smth:

type: float, optional, default: 0.5

23

DeePMD-kit

argument path: model/descriptor[se_a]/rcut_smth

Where to start smoothing. For example the 1/r term is smoothed from rcut to rcut_smth

neuron:

type: list, optional, default: [10, 20, 40]

argument path: model/descriptor[se_a]/neuron

Number of neurons in each hidden layers of the embedding net. When two layers are of the same size
or one layer is twice as large as the previous layer, a skip connection is built.

axis_neuron:

type: int, optional, default: 4
argument path: model/descriptor[se_a]/axis_neuron

Size of the submatrix of G (embedding matrix).

activation_function:

type: str, optional, default: tanh
argument path: model/descriptor[se_a]/activation_function

The activation function in the embedding net. Supported activation functions are “relu”, “relu6”,
“softplus”, “sigmoid”, “tanh”, “gelu”.

resnet_dt:

type: bool, optional, default: False
argument path: model/descriptor[se_a]/resnet_dt

Whether to use a “Timestep” in the skip connection

type_one_side:

type: bool, optional, default: False
argument path: model/descriptor[se_a]/type_one_side

Try to build N_types embedding nets. Otherwise, building N_types^2 embedding nets

precision:

type: str, optional, default: float64
argument path: model/descriptor[se_a]/precision

The precision of the embedding net parameters, supported options are “default”, “float16”, “float32”,
“float64”.

trainable:

type: bool, optional, default: True
argument path: model/descriptor[se_a]/trainable

If the parameters in the embedding net is trainable

seed:

type: int | NoneType, optional
argument path: model/descriptor[se_a]/seed

Random seed for parameter initialization

exclude_types:

type: list, optional, default: []

24 Chapter 4. Training parameters

DeePMD-kit

argument path: model/descriptor[se_a]/exclude_types

The Excluded types

set_davg_zero:

type: bool, optional, default: False
argument path: model/descriptor[se_a]/set_davg_zero

Set the normalization average to zero. This option should be set when atom_ener in the energy fitting
is used

When type is set to se_r:

sel:

type: list
argument path: model/descriptor[se_r]/sel

A list of integers. The length of the list should be the same as the number of atom types in the system.
sel[i] gives the selected number of type-i neighbors. sel[i] is recommended to be larger than the
maximally possible number of type-i neighbors in the cut-off radius.

rcut:

type: float, optional, default: 6.0
argument path: model/descriptor[se_r]/rcut

The cut-off radius.

rcut_smth:

type: float, optional, default: 0.5
argument path: model/descriptor[se_r]/rcut_smth

Where to start smoothing. For example the 1/r term is smoothed from rcut to rcut_smth

neuron:

type: list, optional, default: [10, 20, 40]

argument path: model/descriptor[se_r]/neuron

Number of neurons in each hidden layers of the embedding net. When two layers are of the same size
or one layer is twice as large as the previous layer, a skip connection is built.

activation_function:

type: str, optional, default: tanh
argument path: model/descriptor[se_r]/activation_function

The activation function in the embedding net. Supported activation functions are “relu”, “relu6”,
“softplus”, “sigmoid”, “tanh”, “gelu”.

resnet_dt:

type: bool, optional, default: False
argument path: model/descriptor[se_r]/resnet_dt

Whether to use a “Timestep” in the skip connection

type_one_side:

type: bool, optional, default: False
argument path: model/descriptor[se_r]/type_one_side

Try to build N_types embedding nets. Otherwise, building N_types^2 embedding nets

25

DeePMD-kit

precision:

type: str, optional, default: float64
argument path: model/descriptor[se_r]/precision

The precision of the embedding net parameters, supported options are “default”, “float16”, “float32”,
“float64”.

trainable:

type: bool, optional, default: True
argument path: model/descriptor[se_r]/trainable

If the parameters in the embedding net is trainable

seed:

type: int | NoneType, optional
argument path: model/descriptor[se_r]/seed

Random seed for parameter initialization

exclude_types:

type: list, optional, default: []
argument path: model/descriptor[se_r]/exclude_types

The Excluded types

set_davg_zero:

type: bool, optional, default: False
argument path: model/descriptor[se_r]/set_davg_zero

Set the normalization average to zero. This option should be set when atom_ener in the energy fitting
is used

When type is set to se_a_3be:

sel:

type: list
argument path: model/descriptor[se_a_3be]/sel

A list of integers. The length of the list should be the same as the number of atom types in the system.
sel[i] gives the selected number of type-i neighbors. sel[i] is recommended to be larger than the
maximally possible number of type-i neighbors in the cut-off radius.

rcut:

type: float, optional, default: 6.0
argument path: model/descriptor[se_a_3be]/rcut

The cut-off radius.

rcut_smth:

type: float, optional, default: 0.5
argument path: model/descriptor[se_a_3be]/rcut_smth

Where to start smoothing. For example the 1/r term is smoothed from rcut to rcut_smth

neuron:

type: list, optional, default: [10, 20, 40]

argument path: model/descriptor[se_a_3be]/neuron

26 Chapter 4. Training parameters

DeePMD-kit

Number of neurons in each hidden layers of the embedding net. When two layers are of the same size
or one layer is twice as large as the previous layer, a skip connection is built.

activation_function:

type: str, optional, default: tanh
argument path: model/descriptor[se_a_3be]/activation_function

The activation function in the embedding net. Supported activation functions are “relu”, “relu6”,
“softplus”, “sigmoid”, “tanh”, “gelu”.

resnet_dt:

type: bool, optional, default: False
argument path: model/descriptor[se_a_3be]/resnet_dt

Whether to use a “Timestep” in the skip connection

precision:

type: str, optional, default: float64
argument path: model/descriptor[se_a_3be]/precision

The precision of the embedding net parameters, supported options are “default”, “float16”, “float32”,
“float64”.

trainable:

type: bool, optional, default: True
argument path: model/descriptor[se_a_3be]/trainable

If the parameters in the embedding net is trainable

seed:

type: int | NoneType, optional
argument path: model/descriptor[se_a_3be]/seed

Random seed for parameter initialization

set_davg_zero:

type: bool, optional, default: False
argument path: model/descriptor[se_a_3be]/set_davg_zero

Set the normalization average to zero. This option should be set when atom_ener in the energy fitting
is used

When type is set to se_a_tpe:

sel:

type: list
argument path: model/descriptor[se_a_tpe]/sel

A list of integers. The length of the list should be the same as the number of atom types in the system.
sel[i] gives the selected number of type-i neighbors. sel[i] is recommended to be larger than the
maximally possible number of type-i neighbors in the cut-off radius.

rcut:

type: float, optional, default: 6.0
argument path: model/descriptor[se_a_tpe]/rcut

The cut-off radius.

27

DeePMD-kit

rcut_smth:

type: float, optional, default: 0.5
argument path: model/descriptor[se_a_tpe]/rcut_smth

Where to start smoothing. For example the 1/r term is smoothed from rcut to rcut_smth

neuron:

type: list, optional, default: [10, 20, 40]

argument path: model/descriptor[se_a_tpe]/neuron

Number of neurons in each hidden layers of the embedding net. When two layers are of the same size
or one layer is twice as large as the previous layer, a skip connection is built.

axis_neuron:

type: int, optional, default: 4
argument path: model/descriptor[se_a_tpe]/axis_neuron

Size of the submatrix of G (embedding matrix).

activation_function:

type: str, optional, default: tanh
argument path: model/descriptor[se_a_tpe]/activation_function

The activation function in the embedding net. Supported activation functions are “relu”, “relu6”,
“softplus”, “sigmoid”, “tanh”, “gelu”.

resnet_dt:

type: bool, optional, default: False
argument path: model/descriptor[se_a_tpe]/resnet_dt

Whether to use a “Timestep” in the skip connection

type_one_side:

type: bool, optional, default: False
argument path: model/descriptor[se_a_tpe]/type_one_side

Try to build N_types embedding nets. Otherwise, building N_types^2 embedding nets

precision:

type: str, optional, default: float64
argument path: model/descriptor[se_a_tpe]/precision

The precision of the embedding net parameters, supported options are “default”, “float16”, “float32”,
“float64”.

trainable:

type: bool, optional, default: True
argument path: model/descriptor[se_a_tpe]/trainable

If the parameters in the embedding net is trainable

seed:

type: int | NoneType, optional
argument path: model/descriptor[se_a_tpe]/seed

Random seed for parameter initialization

28 Chapter 4. Training parameters

DeePMD-kit

exclude_types:

type: list, optional, default: []
argument path: model/descriptor[se_a_tpe]/exclude_types

The Excluded types

set_davg_zero:

type: bool, optional, default: False
argument path: model/descriptor[se_a_tpe]/set_davg_zero

Set the normalization average to zero. This option should be set when atom_ener in the energy fitting
is used

type_nchanl:

type: int, optional, default: 4
argument path: model/descriptor[se_a_tpe]/type_nchanl

number of channels for type embedding

type_nlayer:

type: int, optional, default: 2
argument path: model/descriptor[se_a_tpe]/type_nlayer

number of hidden layers of type embedding net

numb_aparam:

type: int, optional, default: 0
argument path: model/descriptor[se_a_tpe]/numb_aparam

dimension of atomic parameter. if set to a value > 0, the atomic parameters are embedded.

When type is set to hybrid:

list:

type: list
argument path: model/descriptor[hybrid]/list

A list of descriptor definitions

When type is set to se_ar:

a:

type: dict
argument path: model/descriptor[se_ar]/a

The parameters of descriptor se_a

r:

type: dict
argument path: model/descriptor[se_ar]/r

The parameters of descriptor se_r

fitting_net:

type: dict
argument path: model/fitting_net

29

DeePMD-kit

The fitting of physical properties.

Depending on the value of type, different sub args are accepted.

type:

type: str (flag key), default: ener
argument path: model/fitting_net/type

The type of the fitting. Valid types are ener, dipole, polar and global_polar.

• ener: Fit an energy model (potential energy surface).

• dipole: Fit an atomic dipole model. Atomic dipole labels for all the selected atoms (see sel_type)
should be provided by dipole.npy in each data system. The file has number of frames lines and 3
times of number of selected atoms columns.

• polar: Fit an atomic polarizability model. Atomic polarizability labels for all the selected atoms
(see sel_type) should be provided by polarizability.npy in each data system. The file has number
of frames lines and 9 times of number of selected atoms columns.

• global_polar: Fit a polarizability model. Polarizability labels should be provided by polarizabil-
ity.npy in each data system. The file has number of frames lines and 9 columns.

When type is set to ener:

numb_fparam:

type: int, optional, default: 0
argument path: model/fitting_net[ener]/numb_fparam

The dimension of the frame parameter. If set to >0, file fparam.npy should be included to provided
the input fparams.

numb_aparam:

type: int, optional, default: 0
argument path: model/fitting_net[ener]/numb_aparam

The dimension of the atomic parameter. If set to >0, file aparam.npy should be included to provided
the input aparams.

neuron:

type: list, optional, default: [120, 120, 120]

argument path: model/fitting_net[ener]/neuron

The number of neurons in each hidden layers of the fitting net. When two hidden layers are of the
same size, a skip connection is built.

activation_function:

type: str, optional, default: tanh
argument path: model/fitting_net[ener]/activation_function

The activation function in the fitting net. Supported activation functions are “relu”, “relu6”, “softplus”,
“sigmoid”, “tanh”, “gelu”.

precision:

type: str, optional, default: float64
argument path: model/fitting_net[ener]/precision

The precision of the fitting net parameters, supported options are “default”, “float16”, “float32”,
“float64”.

30 Chapter 4. Training parameters

DeePMD-kit

resnet_dt:

type: bool, optional, default: True
argument path: model/fitting_net[ener]/resnet_dt

Whether to use a “Timestep” in the skip connection

trainable:

type: bool | list, optional, default: True
argument path: model/fitting_net[ener]/trainable

Whether the parameters in the fitting net are trainable. This option can be

• bool: True if all parameters of the fitting net are trainable, False otherwise.

• list of bool: Specifies if each layer is trainable. Since the fitting net is composed by hidden layers
followed by a output layer, the length of tihs list should be equal to len(neuron)+1.

rcond:

type: float, optional, default: 0.001
argument path: model/fitting_net[ener]/rcond

The condition number used to determine the inital energy shift for each type of atoms.

seed:

type: int | NoneType, optional
argument path: model/fitting_net[ener]/seed

Random seed for parameter initialization of the fitting net

atom_ener:

type: list, optional, default: []
argument path: model/fitting_net[ener]/atom_ener

Specify the atomic energy in vacuum for each type

When type is set to dipole:

neuron:

type: list, optional, default: [120, 120, 120]

argument path: model/fitting_net[dipole]/neuron

The number of neurons in each hidden layers of the fitting net. When two hidden layers are of the
same size, a skip connection is built.

activation_function:

type: str, optional, default: tanh
argument path: model/fitting_net[dipole]/activation_function

The activation function in the fitting net. Supported activation functions are “relu”, “relu6”, “softplus”,
“sigmoid”, “tanh”, “gelu”.

resnet_dt:

type: bool, optional, default: True
argument path: model/fitting_net[dipole]/resnet_dt

Whether to use a “Timestep” in the skip connection

precision:

31

DeePMD-kit

type: str, optional, default: float64
argument path: model/fitting_net[dipole]/precision

The precision of the fitting net parameters, supported options are “default”, “float16”, “float32”,
“float64”.

sel_type:

type: int | NoneType | list, optional
argument path: model/fitting_net[dipole]/sel_type

The atom types for which the atomic dipole will be provided. If not set, all types will be selected.

seed:

type: int | NoneType, optional
argument path: model/fitting_net[dipole]/seed

Random seed for parameter initialization of the fitting net

When type is set to polar:

neuron:

type: list, optional, default: [120, 120, 120]

argument path: model/fitting_net[polar]/neuron

The number of neurons in each hidden layers of the fitting net. When two hidden layers are of the
same size, a skip connection is built.

activation_function:

type: str, optional, default: tanh
argument path: model/fitting_net[polar]/activation_function

The activation function in the fitting net. Supported activation functions are “relu”, “relu6”, “softplus”,
“sigmoid”, “tanh”, “gelu”.

resnet_dt:

type: bool, optional, default: True
argument path: model/fitting_net[polar]/resnet_dt

Whether to use a “Timestep” in the skip connection

precision:

type: str, optional, default: float64
argument path: model/fitting_net[polar]/precision

The precision of the fitting net parameters, supported options are “default”, “float16”, “float32”,
“float64”.

fit_diag:

type: bool, optional, default: True
argument path: model/fitting_net[polar]/fit_diag

Fit the diagonal part of the rotational invariant polarizability matrix, which will be converted to normal
polarizability matrix by contracting with the rotation matrix.

scale:

type: float | list, optional, default: 1.0
argument path: model/fitting_net[polar]/scale

32 Chapter 4. Training parameters

DeePMD-kit

The output of the fitting net (polarizability matrix) will be scaled by scale

diag_shift:

type: float | list, optional, default: 0.0
argument path: model/fitting_net[polar]/diag_shift

The diagonal part of the polarizability matrix will be shifted by diag_shift. The shift operation is
carried out after scale.

sel_type:

type: int | NoneType | list, optional
argument path: model/fitting_net[polar]/sel_type

The atom types for which the atomic polarizability will be provided. If not set, all types will be
selected.

seed:

type: int | NoneType, optional
argument path: model/fitting_net[polar]/seed

Random seed for parameter initialization of the fitting net

When type is set to global_polar:

neuron:

type: list, optional, default: [120, 120, 120]

argument path: model/fitting_net[global_polar]/neuron

The number of neurons in each hidden layers of the fitting net. When two hidden layers are of the
same size, a skip connection is built.

activation_function:

type: str, optional, default: tanh
argument path: model/fitting_net[global_polar]/activation_function

The activation function in the fitting net. Supported activation functions are “relu”, “relu6”, “softplus”,
“sigmoid”, “tanh”, “gelu”.

resnet_dt:

type: bool, optional, default: True
argument path: model/fitting_net[global_polar]/resnet_dt

Whether to use a “Timestep” in the skip connection

precision:

type: str, optional, default: float64
argument path: model/fitting_net[global_polar]/precision

The precision of the fitting net parameters, supported options are “default”, “float16”, “float32”,
“float64”.

fit_diag:

type: bool, optional, default: True
argument path: model/fitting_net[global_polar]/fit_diag

Fit the diagonal part of the rotational invariant polarizability matrix, which will be converted to normal
polarizability matrix by contracting with the rotation matrix.

33

DeePMD-kit

scale:

type: float | list, optional, default: 1.0
argument path: model/fitting_net[global_polar]/scale

The output of the fitting net (polarizability matrix) will be scaled by scale

diag_shift:

type: float | list, optional, default: 0.0
argument path: model/fitting_net[global_polar]/diag_shift

The diagonal part of the polarizability matrix will be shifted by diag_shift. The shift operation is
carried out after scale.

sel_type:

type: int | NoneType | list, optional
argument path: model/fitting_net[global_polar]/sel_type

The atom types for which the atomic polarizability will be provided. If not set, all types will be
selected.

seed:

type: int | NoneType, optional
argument path: model/fitting_net[global_polar]/seed

Random seed for parameter initialization of the fitting net

loss:

type: dict, optional
argument path: loss

The definition of loss function. The type of the loss depends on the type of the fitting. For fitting type ener, the
prefactors before energy, force, virial and atomic energy losses may be provided. For fitting type dipole, polar
and global_polar, the loss may be an empty dict or unset.

Depending on the value of type, different sub args are accepted.

type:

type: str (flag key), default: ener
argument path: loss/type

The type of the loss. For fitting type ener, the loss type should be set to ener or left unset. For tensorial
fitting types dipole, polar and global_polar, the type should be left unset. .

When type is set to ener:

start_pref_e:

type: float | int, optional, default: 0.02
argument path: loss[ener]/start_pref_e

The prefactor of energy loss at the start of the training. Should be larger than or equal to 0. If set to
none-zero value, the energy label should be provided by file energy.npy in each data system. If both
start_pref_energy and limit_pref_energy are set to 0, then the energy will be ignored.

limit_pref_e:

type: float | int, optional, default: 1.0
argument path: loss[ener]/limit_pref_e

34 Chapter 4. Training parameters

DeePMD-kit

The prefactor of energy loss at the limit of the training, Should be larger than or equal to 0. i.e. the training
step goes to infinity.

start_pref_f:

type: float | int, optional, default: 1000
argument path: loss[ener]/start_pref_f

The prefactor of force loss at the start of the training. Should be larger than or equal to 0. If set to none-zero
value, the force label should be provided by file force.npy in each data system. If both start_pref_force
and limit_pref_force are set to 0, then the force will be ignored.

limit_pref_f:

type: float | int, optional, default: 1.0
argument path: loss[ener]/limit_pref_f

The prefactor of force loss at the limit of the training, Should be larger than or equal to 0. i.e. the training
step goes to infinity.

start_pref_v:

type: float | int, optional, default: 0.0
argument path: loss[ener]/start_pref_v

The prefactor of virial loss at the start of the training. Should be larger than or equal to 0. If set to none-zero
value, the virial label should be provided by file virial.npy in each data system. If both start_pref_virial
and limit_pref_virial are set to 0, then the virial will be ignored.

limit_pref_v:

type: float | int, optional, default: 0.0
argument path: loss[ener]/limit_pref_v

The prefactor of virial loss at the limit of the training, Should be larger than or equal to 0. i.e. the training
step goes to infinity.

start_pref_ae:

type: float | int, optional, default: 0.0
argument path: loss[ener]/start_pref_ae

The prefactor of virial loss at the start of the training. Should be larger than or equal to 0. If set to none-zero
value, the virial label should be provided by file virial.npy in each data system. If both start_pref_virial
and limit_pref_virial are set to 0, then the virial will be ignored.

limit_pref_ae:

type: float | int, optional, default: 0.0
argument path: loss[ener]/limit_pref_ae

The prefactor of virial loss at the limit of the training, Should be larger than or equal to 0. i.e. the training
step goes to infinity.

relative_f:

type: float | NoneType, optional
argument path: loss[ener]/relative_f

If provided, relative force error will be used in the loss. The difference of force will be normalized by the
magnitude of the force in the label with a shift given by relative_f, i.e. DF_i / (|| F || + relative_f) with DF
denoting the difference between prediction and label and || F || denoting the L2 norm of the label.

learning_rate:

35

DeePMD-kit

type: dict
argument path: learning_rate

The definitio of learning rate

Depending on the value of type, different sub args are accepted.

type:

type: str (flag key), default: exp
argument path: learning_rate/type

The type of the learning rate. Current type exp, the exponentially decaying learning rate is supported.

When type is set to exp:

start_lr:

type: float, optional, default: 0.001
argument path: learning_rate[exp]/start_lr

The learning rate the start of the training.

stop_lr:

type: float, optional, default: 1e-08
argument path: learning_rate[exp]/stop_lr

The desired learning rate at the end of the training.

decay_steps:

type: int, optional, default: 5000
argument path: learning_rate[exp]/decay_steps

The learning rate is decaying every this number of training steps.

training:

type: dict
argument path: training

The training options

systems:

type: list | str
argument path: training/systems

The data systems. This key can be provided with a listthat specifies the systems, or be provided with a
string by which the prefix of all systems are given and the list of the systems is automatically generated.

set_prefix:

type: str, optional, default: set
argument path: training/set_prefix

The prefix of the sets in the systems.

auto_prob:

type: str, optional, default: prob_sys_size
argument path: training/auto_prob

Determine the probability of systems automatically. The method is assigned by this key and can be

• “prob_uniform” : the probability all the systems are equal, namely 1.0/self.get_nsystems()

36 Chapter 4. Training parameters

DeePMD-kit

• “prob_sys_size” : the probability of a system is proportional to the number of batches in the system

• “prob_sys_size;stt_idx:end_idx:weight;stt_idx:end_idx:weight;. . . ” : the list of systems is devided
into blocks. A block is specified by stt_idx:end_idx:weight, where stt_idx is the starting index of the
system, end_idx is then ending (not including) index of the system, the probabilities of the systems in
this block sums up to weight, and the relatively probabilities within this block is proportional to the
number of batches in the system.

sys_probs:

type: NoneType | list, optional, default: None
argument path: training/sys_probs

A list of float, should be of the same length as train_systems, specifying the probability of each system.

batch_size:

type: int | list | str, optional, default: auto
argument path: training/batch_size

This key can be

• list: the length of which is the same as the systems. The batch size of each system is given by the
elements of the list.

• int: all systems use the same batch size.

• string “auto”: automatically determines the batch size so that the batch_size times the number of
atoms in the system is no less than 32.

• string “auto:N”: automatically determines the batch size so that the batch_size times the number of
atoms in the system is no less than N.

numb_steps:

type: int
argument path: training/numb_steps

Number of training batch. Each training uses one batch of data.

seed:

type: int | NoneType, optional
argument path: training/seed

The random seed for getting frames from the training data set.

disp_file:

type: str, optional, default: lcueve.out
argument path: training/disp_file

The file for printing learning curve.

disp_freq:

type: int, optional, default: 1000
argument path: training/disp_freq

The frequency of printing learning curve.

numb_test:

type: int | list | str, optional, default: 1
argument path: training/numb_test

37

DeePMD-kit

Number of frames used for the test during training.

save_freq:

type: int, optional, default: 1000
argument path: training/save_freq

The frequency of saving check point.

save_ckpt:

type: str, optional, default: model.ckpt
argument path: training/save_ckpt

The file name of saving check point.

disp_training:

type: bool, optional, default: True
argument path: training/disp_training

Displaying verbose information during training.

time_training:

type: bool, optional, default: True
argument path: training/time_training

Timing durining training.

profiling:

type: bool, optional, default: False
argument path: training/profiling

Profiling during training.

profiling_file:

type: str, optional, default: timeline.json
argument path: training/profiling_file

Output file for profiling.

tensorboard:

type: bool, optional, default: False
argument path: training/tensorboard

Enable tensorboard

tensorboard_log_dir:

type: str, optional, default: log
argument path: training/tensorboard_log_dir

The log directory of tensorboard outputs

38 Chapter 4. Training parameters

CHAPTER 5

pair_style deepmd command

5.1 Syntax

pair_style deepmd models ... keyword value ...

• deepmd = style of this pair_style

• models = frozen model(s) to compute the interaction. If multiple models are provided, then the model deviation
will be computed

• keyword = out_file or out_freq or fparam or atomic or relative

5.2 Examples

pair_style deepmd graph.pb
pair_style deepmd graph.pb fparam 1.2
pair_style deepmd graph_0.pb graph_1.pb graph_2.pb out_file md.out out_freq 10 atomic
→˓relative 1.0

5.3 Description

Evaluate the interaction of the system by using Deep Potential or Deep Potential Smooth Edition. It is noticed that
deep potential is not a “pairwise” interaction, but a multi-body interaction.

This pair style takes the deep potential defined in a model file that usually has the .pb extension. The model can be
trained and frozen by package DeePMD-kit.

The model deviation evalulate the consistency of the force predictions from multiple models. By default, only the
maximal, minimal and averge model deviations are output. If the key atomic is set, then the model deviation of
force prediction of each atom will be output.

39

https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.120.143001
https://arxiv.org/abs/1805.09003
https://github.com/deepmodeling/deepmd-kit

DeePMD-kit

By default, the model deviation is output in absolute value. If the keyword relative is set, then the relative model
deviation will be output. The relative model deviation of the force on atom i is defined by

|Df_i|
Ef_i = -------------

|f_i| + level

where Df_i is the absolute model deviation of the force on atom i, |f_i| is the norm of the the force and level
is provided as the parameter of the keyword relative.

5.4 Restrictions

• The deepmd pair style is provided in the USER-DEEPMD package, which is compiled from the DeePMD-kit,
visit the DeePMD-kit website for more information.

• The atom_style of the system should be atomic.

• When using the atomic key word of deepmd is set, one should not use this pair style with MPI parallelization.

40 Chapter 5. pair_style deepmd command

https://github.com/deepmodeling/deepmd-kit

CHAPTER 6

Novel Auxiliary Options

6.1 Type embedding

Instead of training embedding net for each atom pair (regard as G_ij, and turns out to be N^2 networks), we now share
a public embedding net (regard as G) and present each atom with a special vector, named as type embedding (v_i).
So, our algorithm for generating a description change from G_ij(s_ij) to G(s_ij, v_i, v_j).

1. We obtain the type embedding by a small embedding net, projecting atom type to embedding vector.

2. As for the fitting net, we fix the type embedding and replace individual fitting net with shared fitting net. (while
adding type embedding information to its input)

6.1.1 Training hyper-parameter

descriptor:”type” : “se_a_ebd” # for applying share embedding algorithm”type_filter” : list # network architecture of
the small embedding net, which output type embedding”type_one_side” : bool # when generating descriptor, whether
use the centric atom type embedding (true: G(s_ij, v_i, v_j), false: G(s_ij, v_j))

fitting_net:”share_fitting” : bool # if applying share fitting net, set true

6.2 Interpolation with tabulated pair potentials

41

DeePMD-kit

42 Chapter 6. Novel Auxiliary Options

CHAPTER 7

DeePMD-kit TensorBoard usage

TensorBoard provides the visualization and tooling needed for machine learning experimentation. A full instruction
of tensorboard can be found here.

7.1 Highlighted features

DeePMD-kit can now use most of the interesting features enabled by tensorboard!

• Tracking and visualizing metrics, such as l2_loss, l2_energy_loss and l2_force_loss

• Visualizing the model graph (ops and layers)

• Viewing histograms of weights, biases, or other tensors as they change over time.

• Viewing summaries of trainable viriables

7.2 How to use Tensorboard with DeePMD-kit

Before running TensorBoard, make sure you have generated summary data in a log directory by modifying the the input
script, set “tensorboard” true in training subsection will enable the tensorboard data analysis. eg. water_se_a.json.

"training" : {
"systems": ["../data/"],
"set_prefix": "set",
"stop_batch": 1000000,
"batch_size": 1,

"seed": 1,

"_comment": " display and restart",
"_comment": " frequencies counted in batch",
"disp_file": "lcurve.out",

(continues on next page)

43

https://tensorflow.google.cn/tensorboard

DeePMD-kit

(continued from previous page)

"disp_freq": 100,
"numb_test": 10,
"save_freq": 1000,
"save_ckpt": "model.ckpt",
"load_ckpt": "model.ckpt",
"disp_training":true,
"time_training":true,
"tensorboard": true,
"tensorboard_log_dir":"log",
"profiling": false,
"profiling_file":"timeline.json",
"_comment": "that's all"

}

Once you have event files, run TensorBoard and provide the log directory. This should print that TensorBoard has
started. Next, connect to http://tensorboard_server_ip:6006.

TensorBoard requires a logdir to read logs from. For info on configuring TensorBoard, run tensorboard –help. One
can easily change the log name with “tensorboard_log_dir”.

tensorboard --logdir path/to/logs

7.3 Examples

7.3.1 Tracking and visualizing loss metrics(red:train, blue:test)

ALT

44 Chapter 7. DeePMD-kit TensorBoard usage

DeePMD-kit

ALT

ALT

7.3. Examples 45

DeePMD-kit

7.3.2 Visualizing deepmd-kit model graph

ALT

46 Chapter 7. DeePMD-kit TensorBoard usage

DeePMD-kit

7.3.3 Viewing histograms of weights, biases, or other tensors as they change over
time

ALT

7.3. Examples 47

DeePMD-kit

ALT

48 Chapter 7. DeePMD-kit TensorBoard usage

DeePMD-kit

7.3.4 Viewing summaries of trainable variables

ALT

7.4 Atention

Allowing the tensorboard analysis will takes extra execution time.(eg, 15% increasing @Nvidia GTX 1080Ti
double precision with default water sample)

TensorBoard can be used in Google Chrome or Firefox. Other browsers might work, but there may be bugs or
performance issues.

7.4. Atention 49

DeePMD-kit

50 Chapter 7. DeePMD-kit TensorBoard usage

CHAPTER 8

DeePMD-kit API

Get local GPU resources from CUDA_VISIBLE_DEVICES enviroment variable.

deepmd.cluster.local.get_resource()→ Tuple[str, List[str], Optional[List[int]]]
Get local resources: nodename, nodelist, and gpus.

Tuple[str, List[str], Optional[List[int]]] nodename, nodelist, and gpus

51

DeePMD-kit

52 Chapter 8. DeePMD-kit API

CHAPTER 9

Coding Conventions

9.1 Preface

The aim of these coding standards is to help create a codebase with defined and consistent coding style that every
contributor can get easily familiar with. This will in enhance code readability as there will be no different coding
styles from different contributors and everything will be documented. Also PR diffs will be smaller because of unified
coding style. Finally static typing will help in hunting down potential bugs before the code is even run.

Contributed code will not be refused merely because it does not strictly adhere to these conditions; as long as it’s
internally consistent, clean, and correct, it probably will be accepted. But don’t be surprised if the “offending” code
gets fiddled over time to conform to these conventions.

There are also github actions CI checks for python code style which will annotate the PR diff for you to see the areas
where your code is lacking compared to the set standard.

9.2 Rules

The code must be compatible with the oldest supported version of python which is 3.6

The project follows the generic coding conventions as specified in the Style Guide for Python Code, Docstring Con-
ventions and Typing Conventions PEPs, clarified and extended as follows:

• Do not use “*” imports such as from module import *. Instead, list imports explicitly.

• Use 4 spaces per indentation level. No tabs.

• No one-liner compound statements (i.e., no if x: return: use two lines).

• Maximum line length is 88 characters as recomended by black wich is less strict than Docstring Conventions
suggests.

• Use “StudlyCaps” for class names.

• Use “lowercase” or “lowercase_with_underscores” for function, method, variable names and module names.
For short names, joined lowercase may be used (e.g. “tagname”). Choose what is most readable.

53

https://www.python.org/dev/peps/pep-0008/
https://www.python.org/dev/peps/pep-0257/
https://www.python.org/dev/peps/pep-0257/
https://www.python.org/dev/peps/pep-0484/
https://github.com/psf/black
https://www.python.org/dev/peps/pep-0257/

DeePMD-kit

• No single-character variable names, except indices in loops that encompass a very small number of lines (for
i in range(5): ...).

• Avoid lambda expressions. Use named functions instead.

• Avoid functional constructs (filter, map, etc.). Use list comprehensions instead.

• Use "double quotes" for string literals, and """triple double quotes""" for docstring’s. Single
quotes are OK for something like

• Use f-strings s = f"{x:.2f}" instead of old style formating with "%f" % x. string format method "{x:.
2f}".format() may be used sparsely where it is more convenient than f-strings.

9.3 Whitespace

Python is not C/C++ so whitespace should be used sparingly to maintain code readability

• Read the Whitespace in Expressions and Statements section of PEP8.

• Avoid trailing whitespaces.

• Do not use excessive whitespace in your expressions and statements.

• You should have blank spaces after commas, colons, and semi-colons if it isn’t trailing next to the end of a
bracket, brace, or parentheses.

• With any operators you should use a space in on both sides of the operator.

• Colons for slicing are considered a binary operator, and should not have any spaces between them.

• You should have parentheses with no space, directly next to the function when calling functions function().

• When indexing or slicing the brackets should be directly next to the collection with no space
collection["index"].

• Whitespace used to line up variable values is not recommended.

• Make sure you are consistent with the formats you choose when optional choices are available.

f"something {'this' if x else 'that'}"

Attention: Thus spake the Lord: Thou shalt indent with four spaces. No more, no less. Four shall be the number
of spaces thou shalt indent, and the number of thy indenting shall be four. Eight shalt thou not indent, nor either
indent thou two, excepting that thou then proceed to four. Tabs are right out.

Georg Brandl

9.4 General advice

• Get rid of as many break and continue statements as possible.

• Write short functions. All functions should fit within a standard screen.

• Use descriptive variable names.

54 Chapter 9. Coding Conventions

https://www.python.org/dev/peps/pep-0008/
http://www.gnu.org/software/emacs/manual/html_node/emacs/Useless-Whitespace.html

DeePMD-kit

9.5 Writing documentation in the code

Here is an example of how to write good docstrings:

https://github.com/numpy/numpy/blob/master/doc/example.py

The numpy doctring documentation can be found here

It is a good practice to run pydocstyle check on your code or use a text editor that does it automatically):

$ pydocstyle filename.py

9.6 Run pycodestyle on your code

It’s a good idea to run pycodestyle on your code (or use a text editor that does it automatically):

$ pycodestyle filename.py

9.7 Run mypy on your code

It’s a good idea to run mypy on your code (or use a text editor that does it automatically):

$ mypy filename.py

9.8 Run pydocstyle on your code

It’s a good idea to run pycodestyle on your code (or use a text editor that does it automatically):

$ pycodestyle filename.py --max-line-length=88

9.9 Run black on your code

Another method of enforcing PEP8 is using a tool such as black. These tools tend to be very effective at cleaning up
code, but should be used carefully and code should be retested after cleaning it. Try:

$ black --help

9.5. Writing documentation in the code 55

https://github.com/numpy/numpy/blob/master/doc/example.py
https://numpydoc.readthedocs.io/en/latest/format.html
https://github.com/PyCQA/pydocstyle
https://github.com/PyCQA/pycodestyle
https://github.com/PyCQA/pycodestyle
https://github.com/PyCQA/pycodestyle
https://www.python.org/dev/peps/pep-0008/
https://github.com/psf/black

DeePMD-kit

56 Chapter 9. Coding Conventions

CHAPTER 10

Application Examples

10.1 Dipole and polarizability model training

10.2 Training with non-periodic systems

10.3 MD on different hardware platforms

57

DeePMD-kit

58 Chapter 10. Application Examples

CHAPTER 11

Indices and tables

• genindex

• modindex

• search

59

DeePMD-kit

60 Chapter 11. Indices and tables

Python Module Index

d
deepmd.cluster.local, 51
deepmd.model, 51

61

DeePMD-kit

62 Python Module Index

Index

D
deepmd.cluster.local (module), 51
deepmd.model (module), 51

G
get_resource() (in module deepmd.cluster.local),

51

63

	Easy installation methods
	Offline packages
	With conda
	With Docker

	From source code
	Install the python interface
	Install the C++ interface
	Hardware platforms

	Use DeePMD-kit
	Prepare data
	Train a model
	Freeze a model
	Test a model
	Compress a model
	Model inference
	Run MD with LAMMPS
	Run path-integral MD with i-PI
	Use deep potential with ASE

	Training parameters
	pair_style deepmd command
	Syntax
	Examples
	Description
	Restrictions

	Novel Auxiliary Options
	Type embedding
	Interpolation with tabulated pair potentials

	DeePMD-kit TensorBoard usage
	Highlighted features
	How to use Tensorboard with DeePMD-kit
	Examples
	Atention

	DeePMD-kit API
	Coding Conventions
	Preface
	Rules
	Whitespace
	General advice
	Writing documentation in the code
	Run pycodestyle on your code
	Run mypy on your code
	Run pydocstyle on your code
	Run black on your code

	Application Examples
	Dipole and polarizability model training
	Training with non-periodic systems
	MD on different hardware platforms

	Indices and tables
	Python Module Index
	Index

