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DeePMD-kit

DeePMD-kit is a package written in Python/C++, designed to minimize the effort required to build deep learning based
model of interatomic potential energy and force field and to perform molecular dynamics (MD). This brings new hopes
to addressing the accuracy-versus-efficiency dilemma in molecular simulations. Applications of DeePMD-kit span
from finite molecules to extended systems and from metallic systems to chemically bonded systems.

Important: The project DeePMD-kit is licensed under GNU LGPLv3.0. If you use this code in any future publica-
tions, please cite this using Han Wang, Linfeng Zhang, Jiequn Han, and Weinan E. “DeePMD-kit: A deep learning
package for many-body potential energy representation and molecular dynamics.” Computer Physics Communications
228 (2018): 178-184.
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CHAPTER

ONE

INSTALLATION

• Easy installation methods

• Install from source code

• Install i-PI

• Building conda packages

1.1 Easy installation methods

There various easy methods to install DeePMD-kit. Choose one that you prefer. If you want to build by yourself, jump
to the next two sections.

After your easy installation, DeePMD-kit (dp) and LAMMPS (lmp) will be available to execute. You can try dp -h
and lmp -h to see the help. mpirun is also available considering you may want to run LAMMPS in parallel.

• Install off-line packages

• Install with conda

• Install with docker

1.1.1 Install off-line packages

Both CPU and GPU version offline packages are avaiable in the Releases page.

Some packages are splited into two files due to size limit of GitHub. One may merge them into one after downloading:

cat deepmd-kit-2.0.0-cuda11.1_gpu-Linux-x86_64.sh.0 deepmd-kit-2.0.0-cuda11.1_gpu-Linux-
→˓x86_64.sh.1 > deepmd-kit-2.0.0-cuda11.1_gpu-Linux-x86_64.sh

1.1.2 Install with conda

DeePMD-kit is avaiable with conda. Install Anaconda or Miniconda first.

One may create an environment that contains the CPU version of DeePMD-kit and LAMMPS:

conda create -n deepmd deepmd-kit=*=*cpu lammps-dp=*=*cpu -c https://conda.deepmodeling.
→˓org

Or one may want to create a GPU environment containing CUDA Toolkit:
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conda create -n deepmd deepmd-kit=*=*gpu lammps-dp=*=*gpu cudatoolkit=11.1 -c https://
→˓conda.deepmodeling.org -c nvidia

One could change the CUDA Toolkit version from 11.1 to 10.1 or 10.0.

One may speficy the DeePMD-kit version such as 2.0.0 using

conda create -n deepmd deepmd-kit=2.0.0=*cpu lammps-dp=2.0.0=*cpu -c https://conda.
→˓deepmodeling.org

One may enable the environment using

conda activate deepmd

1.1.3 Install with docker

A docker for installing the DeePMD-kit is available here.

To pull the CPU version:

docker pull ghcr.io/deepmodeling/deepmd-kit:2.0.0_cpu

To pull the GPU version:

docker pull ghcr.io/deepmodeling/deepmd-kit:2.0.0_cuda10.1_gpu

1.2 Install from source code

Please follow our github webpage to download the latest released version and development version.

Or get the DeePMD-kit source code by git clone

cd /some/workspace
git clone --recursive https://github.com/deepmodeling/deepmd-kit.git deepmd-kit

The --recursive option clones all submodules needed by DeePMD-kit.

For convenience, you may want to record the location of source to a variable, saying deepmd_source_dir by

cd deepmd-kit
deepmd_source_dir=`pwd`

• Install the python interaction

– Install the Tensorflow’s python interface

– Install the DeePMD-kit’s python interface

• Install the C++ interface

– Install the Tensorflow’s C++ interface

– Install the DeePMD-kit’s C++ interface

• Install LAMMPS’s DeePMD-kit module
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1.2.1 Install the python interface

Install the Tensorflow’s python interface

First, check the python version on your machine

python --version

We follow the virtual environment approach to install the tensorflow’s Python interface. The full instruction can be
found on the tensorflow’s official website. Now we assume that the Python interface will be installed to virtual envi-
ronment directory $tensorflow_venv

virtualenv -p python3 $tensorflow_venv
source $tensorflow_venv/bin/activate
pip install --upgrade pip
pip install --upgrade tensorflow==2.3.0

It is notice that everytime a new shell is started and one wants to use DeePMD-kit, the virtual environment should be
activated by

source $tensorflow_venv/bin/activate

if one wants to skip out of the virtual environment, he/she can do

deactivate

If one has multiple python interpreters named like python3.x, it can be specified by, for example

virtualenv -p python3.7 $tensorflow_venv

If one does not need the GPU support of deepmd-kit and is concerned about package size, the CPU-only version of
tensorflow should be installed by

pip install --upgrade tensorflow-cpu==2.3.0

To verify the installation, run

python -c "import tensorflow as tf;print(tf.reduce_sum(tf.random.normal([1000, 1000])))"

One should remember to activate the virtual environment every time he/she uses deepmd-kit.

Install the DeePMD-kit’s python interface

Execute

cd $deepmd_source_dir
pip install .

One may set the following environment variables before executing pip:

1.2. Install from source code 5
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Environment variables Allowed
value

Default value Usage

DP_VARIANT cpu, cuda,
rocm

cpu Build CPU variant or GPU variant with CUDA or
ROCM support.

CUDA_TOOLKIT_ROOT_DIRPath Detected auto-
matically

The path to the CUDA toolkit directory.

ROCM_ROOT Path Detected auto-
matically

The path to the ROCM toolkit directory.

To test the installation, one should firstly jump out of the source directory

cd /some/other/workspace

then execute

dp -h

It will print the help information like

usage: dp [-h] {train,freeze,test} ...

DeePMD-kit: A deep learning package for many-body potential energy
representation and molecular dynamics

optional arguments:
-h, --help show this help message and exit

Valid subcommands:
{train,freeze,test}
train train a model
freeze freeze the model
test test the model

1.2.2 Install the C++ interface

If one does not need to use DeePMD-kit with Lammps or I-Pi, then the python interface installed in the previous section
does everything and he/she can safely skip this section.

Install the Tensorflow’s C++ interface

Check the compiler version on your machine

gcc --version

The C++ interface of DeePMD-kit was tested with compiler gcc >= 4.8. It is noticed that the I-Pi support is only
compiled with gcc >= 4.9.

First the C++ interface of Tensorflow should be installed. It is noted that the version of Tensorflow should be in
consistent with the python interface. You may follow the instruction to install the corresponding C++ interface.

6 Chapter 1. Installation
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Install the DeePMD-kit’s C++ interface

Now goto the source code directory of DeePMD-kit and make a build place.

cd $deepmd_source_dir/source
mkdir build
cd build

I assume you want to install DeePMD-kit into path $deepmd_root, then execute cmake

cmake -DTENSORFLOW_ROOT=$tensorflow_root -DCMAKE_INSTALL_PREFIX=$deepmd_root ..

where the variable tensorflow_root stores the location where the TensorFlow’s C++ interface is installed.

One may add the following arguments to cmake:

CMake Aurgements Allowed
value

Default value Usage

-DTENSORFLOW_ROOT=<value> Path - The Path to TensorFlow’s C++ inter-
face.

-DCMAKE_INSTALL_PREFIX=<value>Path - The Path where DeePMD-kit will be in-
stalled.

-DUSE_CUDA_TOOLKIT=<value> TRUE or
FALSE

FALSE If TRUE, Build GPU support with
CUDA toolkit.

-DCUDA_TOOLKIT_ROOT_DIR=<value>Path Detected automat-
ically

The path to the CUDA toolkit directory.

-DUSE_ROCM_TOOLKIT=<value> TRUE or
FALSE

FALSE If TRUE, Build GPU support with
ROCM toolkit.

-DROCM_ROOT=<value> Path Detected automat-
ically

The path to the ROCM toolkit direc-
tory.

If the cmake has executed successfully, then

make -j4
make install

The option -j4means using 4 processes in parallel. You may want to use a different number according to your hardware.

If everything works fine, you will have the following executable and libraries installed in $deepmd_root/bin and
$deepmd_root/lib

$ ls $deepmd_root/bin
dp_ipi
$ ls $deepmd_root/lib
libdeepmd_ipi.so libdeepmd_op.so libdeepmd.so

1.2. Install from source code 7
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1.2.3 Install LAMMPS’s DeePMD-kit module

DeePMD-kit provide module for running MD simulation with LAMMPS. Now make the DeePMD-kit module for
LAMMPS.

cd $deepmd_source_dir/source/build
make lammps

DeePMD-kit will generate a module called USER-DEEPMD in the build directory. If you need low precision version,
move env_low.sh to env.sh in the directory. Now download the LAMMPS code (29Oct2020 or later), and uncom-
press it:

cd /some/workspace
wget https://github.com/lammps/lammps/archive/stable_29Oct2020.tar.gz
tar xf stable_29Oct2020.tar.gz

The source code of LAMMPS is stored in directory lammps-stable_29Oct2020. Now go into the LAMMPS code
and copy the DeePMD-kit module like this

cd lammps-stable_29Oct2020/src/
cp -r $deepmd_source_dir/source/build/USER-DEEPMD .

Now build LAMMPS

make yes-kspace
make yes-user-deepmd
make mpi -j4

If everything works fine, you will end up with an executable lmp_mpi.

./lmp_mpi -h

The DeePMD-kit module can be removed from LAMMPS source code by

make no-user-deepmd

1.3 Install i-PI

The i-PI works in a client-server model. The i-PI provides the server for integrating the replica positions of atoms,
while the DeePMD-kit provides a client named dp_ipi that computes the interactions (including energy, force and
virial). The server and client communicates via the Unix domain socket or the Internet socket. A full instruction of
i-PI can be found here. The source code and a complete installation instructions of i-PI can be found here. To use i-PI
with already existing drivers, install and update using Pip:

pip install -U i-PI

Test with Pytest:

pip install pytest
pytest --pyargs ipi.tests

8 Chapter 1. Installation
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1.4 Building conda packages

One may want to keep both convenience and personalization of the DeePMD-kit. To achieve this goal, one can consider
builing conda packages. We provide building scripts in deepmd-kit-recipes organization. These building tools are
driven by conda-build and conda-smithy.

For example, if one wants to turn on MPIIO package in LAMMPS, go to lammps-dp-feedstock repository and modify
recipe/build.sh. -D PKG_MPIIO=OFF should be changed to -D PKG_MPIIO=ON. Then go to the main directory
and executing

./build-locally.py

This requires the Docker has been installed. After the building, the packages will be generated in build_artifacts/
linux-64 and build_artifacts/noarch, and then one can install then execuating

conda create -n deepmd lammps-dp -c file:///path/to/build_artifacts -c https://conda.
→˓deepmodeling.org -c nvidia

One may also upload packages to one’s Anaconda channel, so they can be installed on other machines:

anaconda upload /path/to/build_artifacts/linux-64/*.tar.bz2 /path/to/build_artifacts/
→˓noarch/*.tar.bz2

1.4. Building conda packages 9
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CHAPTER

TWO

GETTING STARTED

In this text, we will call the deep neural network that is used to represent the interatomic interactions (Deep Potential)
the model. The typical procedure of using DeePMD-kit is

1. Prepare data

2. Train a model

• Write the input script

• Training

• Parallel training

• Training analysis with Tensorboard

3. Freeze a model

4. Test a model

5. Compress a model

6. Model inference

• Python interface

• C++ interface

7. Run MD

• Run MD with LAMMPS

• Run path-integral MD with i-PI

• Use deep potential with ASE

8. Known limitations

2.1 Prepare data

One needs to provide the following information to train a model: the atom type, the simulation box, the atom coordinate,
the atom force, system energy and virial. A snapshot of a system that contains these information is called a frame. We
use the following convention of units:

11
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Property Unit
Time ps
Length Å
Energy eV
Force eV/Å
Virial eV
Pressure Bar

The frames of the system are stored in two formats. A raw file is a plain text file with each information item written in
one file and one frame written on one line. The default files that provide box, coordinate, force, energy and virial are
box.raw, coord.raw, force.raw, energy.raw and virial.raw, respectively. We recommend you use these file
names. Here is an example of force.raw:

$ cat force.raw
-0.724 2.039 -0.951 0.841 -0.464 0.363
6.737 1.554 -5.587 -2.803 0.062 2.222
-1.968 -0.163 1.020 -0.225 -0.789 0.343

This force.raw contains 3 frames with each frame having the forces of 2 atoms, thus it has 3 lines and 6 columns.
Each line provides all the 3 force components of 2 atoms in 1 frame. The first three numbers are the 3 force components
of the first atom, while the second three numbers are the 3 force components of the second atom. The coordinate file
coord.raw is organized similarly. In box.raw, the 9 components of the box vectors should be provided on each line.
In virial.raw, the 9 components of the virial tensor should be provided on each line in the order XX XY XZ YX YY
YZ ZX ZY ZZ. The number of lines of all raw files should be identical.

We assume that the atom types do not change in all frames. It is provided by type.raw, which has one line with the
types of atoms written one by one. The atom types should be integers. For example the type.raw of a system that has
2 atoms with 0 and 1:

$ cat type.raw
0 1

Sometimes one needs to map the integer types to atom name. The mapping can be given by the file type_map.raw.
For example

$ cat type_map.raw
O H

The type 0 is named by "O" and the type 1 is named by "H".

The second format is the data sets of numpy binary data that are directly used by the training program. User can use the
script $deepmd_source_dir/data/raw/raw_to_set.sh to convert the prepared raw files to data sets. For example,
if we have a raw file that contains 6000 frames,

$ ls
box.raw coord.raw energy.raw force.raw type.raw virial.raw
$ $deepmd_source_dir/data/raw/raw_to_set.sh 2000
nframe is 6000
nline per set is 2000
will make 3 sets
making set 0 ...
making set 1 ...
making set 2 ...

(continues on next page)
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(continued from previous page)

$ ls
box.raw coord.raw energy.raw force.raw set.000 set.001 set.002 type.raw virial.
→˓raw

It generates three sets set.000, set.001 and set.002, with each set contains 2000 frames. One do not need to take
care of the binary data files in each of the set.* directories. The path containing set.* and type.raw is called a
system.

2.1.1 Data preparation with dpdata

One can use the a convenient tool dpdata to convert data directly from the output of first priciple packages to the
DeePMD-kit format. One may follow the example of using dpdata to find out how to use it.

2.2 Train a model

2.2.1 Write the input script

A model has two parts, a descriptor that maps atomic configuration to a set of symmetry invariant features, and a fitting
net that takes descriptor as input and predicts the atomic contribution to the target physical property.

DeePMD-kit implements the following descriptors:

1. se_e2_a: DeepPot-SE constructed from all information (both angular and radial) of atomic configurations. The
embedding takes the distance between atoms as input.

2. se_e2_r: DeepPot-SE constructed from radial information of atomic configurations. The embedding takes the
distance between atoms as input.

3. se_e3: DeepPot-SE constructed from all information (both angular and radial) of atomic configurations. The
embedding takes angles between two neighboring atoms as input.

4. loc_frame: Defines a local frame at each atom, and the compute the descriptor as local coordinates under this
frame.

5. hybrid: Concate a list of descriptors to form a new descriptor.

The fitting of the following physical properties are supported

1. ener: Fitting the energy of the system. The force (derivative with atom positions) and the virial (derivative with
the box tensor) can also be trained. See the example.

2. dipole: The dipole moment.

3. polar: The polarizability.

2.2. Train a model 13
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2.2.2 Training

The training can be invoked by

$ dp train input.json

where input.json is the name of the input script. See the example for more details.

During the training, checkpoints will be written to files with prefix save_ckpt every save_freq training steps.

Several command line options can be passed to dp train, which can be checked with

$ dp train --help

An explanation will be provided

positional arguments:
INPUT the input json database

optional arguments:
-h, --help show this help message and exit
--init-model INIT_MODEL

Initialize a model by the provided checkpoint
--restart RESTART Restart the training from the provided checkpoint

--init-model model.ckpt, initializes the model training with an existing model that is stored in the checkpoint
model.ckpt, the network architectures should match.

--restart model.ckpt, continues the training from the checkpoint model.ckpt.

On some resources limited machines, one may want to control the number of threads used by DeePMD-kit.
This is achieved by three environmental variables: OMP_NUM_THREADS, TF_INTRA_OP_PARALLELISM_THREADS
and TF_INTER_OP_PARALLELISM_THREADS. OMP_NUM_THREADS controls the multithreading of DeePMD-kit imple-
mented operations. TF_INTRA_OP_PARALLELISM_THREADS and TF_INTER_OP_PARALLELISM_THREADS controls
intra_op_parallelism_threads and inter_op_parallelism_threads, which are Tensorflow configurations
for multithreading. An explanation is found here.

For example if you wish to use 3 cores of 2 CPUs on one node, you may set the environmental variables and run
DeePMD-kit as follows:

export OMP_NUM_THREADS=6
export TF_INTRA_OP_PARALLELISM_THREADS=3
export TF_INTER_OP_PARALLELISM_THREADS=2
dp train input.json

One can set other environmental variables:

Environment vari-
ables

Allowed
value

Default
value

Usage

DP_INTERFACE_PREC high, low high Control high (double) or low (float) precision of train-
ing.
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2.2.3 Parallel training

Currently, parallel training is enabled in a sychoronized way with help of Horovod. DeePMD-kit will decide parallel
training or not according to MPI context. Thus, there is no difference in your json/yaml input file.

Testing examples/water/se_e2_a on a 8-GPU host, linear acceleration can be observed with increasing number of
cards.

Num of GPU cards Seconds every 100 samples Samples per second Speed up
1 1.6116 62.05 1.00
2 1.6310 61.31 1.98
4 1.6168 61.85 3.99
8 1.6212 61.68 7.95

To experience this powerful feature, please intall Horovod and mpi4py first. For better performance on GPU, please
follow tuning steps in Horovod on GPU.

# By default, MPI is used as communicator.
HOROVOD_WITHOUT_GLOO=1 HOROVOD_WITH_TENSORFLOW=1 pip install horovod mpi4py

Horovod works in the data-parallel mode resulting a larger global batch size. For example, the real batch size is 8 when
batch_size is set to 2 in the input file and you lauch 4 workers. Thus, learning_rate is automatically scaled by
the number of workers for better convergence. Technical details of such heuristic rule are discussed at Accurate, Large
Minibatch SGD: Training ImageNet in 1 Hour.

With dependencies installed, have a quick try!

# Launch 4 processes on the same host
CUDA_VISIBLE_DEVICES=4,5,6,7 horovodrun -np 4 \

dp train --mpi-log=workers input.json

Need to mention, environment variable CUDA_VISIBLE_DEVICES must be set to control parallelism on the occupied
host where one process is bound to one GPU card.

What’s more, 2 command-line arguments are defined to control the logging behvaior.

optional arguments:
-l LOG_PATH, --log-path LOG_PATH

set log file to log messages to disk, if not
specified, the logs will only be output to console
(default: None)

-m {master,collect,workers}, --mpi-log {master,collect,workers}
Set the manner of logging when running with MPI.
'master' logs only on main process, 'collect'
broadcasts logs from workers to master and 'workers'
means each process will output its own log (default:
master)

2.2. Train a model 15
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2.2.4 Training analysis with Tensorboard

If enbled in json/yaml input file DeePMD-kit will create log files which can be used to analyze training procedure with
Tensorboard. For a short tutorial please read this document.

2.3 Freeze a model

The trained neural network is extracted from a checkpoint and dumped into a database. This process is called “freezing”
a model. The idea and part of our code are from Morgan. To freeze a model, typically one does

$ dp freeze -o graph.pb

in the folder where the model is trained. The output database is called graph.pb.

2.4 Test a model

The frozen model can be used in many ways. The most straightforward test can be performed using dp test. A typical
usage of dp test is

dp test -m graph.pb -s /path/to/system -n 30

where -m gives the tested model, -s the path to the tested system and -n the number of tested frames. Several other
command line options can be passed to dp test, which can be checked with

$ dp test --help

An explanation will be provided

usage: dp test [-h] [-m MODEL] [-s SYSTEM] [-S SET_PREFIX] [-n NUMB_TEST]
[-r RAND_SEED] [--shuffle-test] [-d DETAIL_FILE]

optional arguments:
-h, --help show this help message and exit
-m MODEL, --model MODEL

Frozen model file to import
-s SYSTEM, --system SYSTEM

The system dir
-S SET_PREFIX, --set-prefix SET_PREFIX

The set prefix
-n NUMB_TEST, --numb-test NUMB_TEST

The number of data for test
-r RAND_SEED, --rand-seed RAND_SEED

The random seed
--shuffle-test Shuffle test data
-d DETAIL_FILE, --detail-file DETAIL_FILE

The file containing details of energy force and virial
accuracy
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2.4.1 Calculate Model Deviation

One can also use a subcommand to calculate deviation of prediced forces or virials for a bunch of models in the following
way:

dp model-devi -m graph.000.pb graph.001.pb graph.002.pb graph.003.pb -s ./data -o model_
→˓devi.out

where -m specifies graph files to be calculated, -s gives the data to be evaluated, -o the file to which model deviation
results is dumped. Here is more information on this sub-command:

usage: dp model-devi [-h] [-v {DEBUG,3,INFO,2,WARNING,1,ERROR,0}]
[-l LOG_PATH] [-m MODELS [MODELS ...]] [-s SYSTEM]
[-S SET_PREFIX] [-o OUTPUT] [-f FREQUENCY] [-i ITEMS]

optional arguments:
-h, --help show this help message and exit
-v {DEBUG,3,INFO,2,WARNING,1,ERROR,0}, --log-level {DEBUG,3,INFO,2,WARNING,1,ERROR,0}

set verbosity level by string or number, 0=ERROR,
1=WARNING, 2=INFO and 3=DEBUG (default: INFO)

-l LOG_PATH, --log-path LOG_PATH
set log file to log messages to disk, if not
specified, the logs will only be output to console
(default: None)

-m MODELS [MODELS ...], --models MODELS [MODELS ...]
Frozen models file to import (default:
['graph.000.pb', 'graph.001.pb', 'graph.002.pb',
'graph.003.pb'])

-s SYSTEM, --system SYSTEM
The system directory, not support recursive detection.
(default: .)

-S SET_PREFIX, --set-prefix SET_PREFIX
The set prefix (default: set)

-o OUTPUT, --output OUTPUT
The output file for results of model deviation
(default: model_devi.out)

-f FREQUENCY, --frequency FREQUENCY
The trajectory frequency of the system (default: 1)

For more details with respect to definition of model deviation and its application, please refer to Yuzhi Zhang,
Haidi Wang, Weijie Chen, Jinzhe Zeng, Linfeng Zhang, Han Wang, and Weinan E, DP-GEN: A
concurrent learning platform for the generation of reliable deep learning based potential
energy models, Computer Physics Communications, 2020, 253, 107206.
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2.5 Compress a model

Once the frozen model is obtained from deepmd-kit, we can get the neural network structure and its parameters (weights,
biases, etc.) from the trained model, and compress it in the following way:

dp compress input.json -i graph.pb -o graph-compress.pb

where input.json denotes the original training input script, -i gives the original frozen model, -o gives the compressed
model. Several other command line options can be passed to dp compress, which can be checked with

$ dp compress --help

An explanation will be provided

usage: dp compress [-h] [-i INPUT] [-o OUTPUT] [-e EXTRAPOLATE] [-s STRIDE]
[-f FREQUENCY] [-d FOLDER]
INPUT

positional arguments:
INPUT The input parameter file in json or yaml format, which

should be consistent with the original model parameter
file

optional arguments:
-h, --help show this help message and exit
-v {DEBUG,3,INFO,2,WARNING,1,ERROR,0}, --log-level {DEBUG,3,INFO,2,WARNING,1,ERROR,0}

set verbosity level by string or number, 0=ERROR,
1=WARNING, 2=INFO and 3=DEBUG (default: INFO)

-l LOG_PATH, --log-path LOG_PATH
set log file to log messages to disk, if not
specified, the logs will only be output to console
(default: None)

-m {master,collect,workers}, --mpi-log {master,collect,workers}
Set the manner of logging when running with MPI.
'master' logs only on main process, 'collect'
broadcasts logs from workers to master and 'workers'
means each process will output its own log (default:
master)

-i INPUT, --input INPUT
The original frozen model, which will be compressed by
the code (default: frozen_model.pb)

-o OUTPUT, --output OUTPUT
The compressed model (default:
frozen_model_compressed.pb)

-s STEP, --step STEP Model compression uses fifth-order polynomials to
interpolate the embedding-net. It introduces two
tables with different step size to store the
parameters of the polynomials. The first table covers
the range of the training data, while the second table
is an extrapolation of the training data. The domain
of each table is uniformly divided by a given step
size. And the step(parameter) denotes the step size of
the first table and the second table will use 10 *

(continues on next page)
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(continued from previous page)

step as it's step size to save the memory. Usually the
value ranges from 0.1 to 0.001. Smaller step means
higher accuracy and bigger model size (default: 0.01)

-e EXTRAPOLATE, --extrapolate EXTRAPOLATE
The domain range of the first table is automatically
detected by the code: [d_low, d_up]. While the second
table ranges from the first table's upper
boundary(d_up) to the extrapolate(parameter) * d_up:
[d_up, extrapolate * d_up] (default: 5)

-f FREQUENCY, --frequency FREQUENCY
The frequency of tabulation overflow check(Whether the
input environment matrix overflow the first or second
table range). By default do not check the overflow
(default: -1)

-c CHECKPOINT_FOLDER, --checkpoint-folder CHECKPOINT_FOLDER
path to checkpoint folder (default: .)

Parameter explanation

Model compression, which including tabulating the embedding-net. The table is composed of fifth-order polynomial
coefficients and is assembled from two sub-tables. The first sub-table takes the stride(parameter) as it’s uniform stride,
while the second sub-table takes 10 * stride as it’s uniform stride. The range of the first table is automatically detected
by deepmd-kit, while the second table ranges from the first table’s upper boundary(upper) to the extrapolate(parameter)
* upper. Finally, we added a check frequency parameter. It indicates how often the program checks for overflow(if the
input environment matrix overflow the first or second table range) during the MD inference.

Justification of model compression

Model compression, with little loss of accuracy, can greatly speed up MD inference time. According to different
simulation systems and training parameters, the speedup can reach more than 10 times at both CPU and GPU devices.
At the same time, model compression can greatly change the memory usage, reducing as much as 20 times under the
same hardware conditions.

Acceptable original model version

The model compression method requires that the version of DeePMD-kit used in original model generation should be
1.3 or above. If one has a frozen 1.2 model, one can first use the convenient conversion interface of DeePMD-kit-v1.2.4
to get a 1.3 executable model.(eg: dp convert-to-1.3 -i frozen_1.2.pb -o frozen_1.3.pb)
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2.6 Model inference

Note that the model for inference is required to be compatible with the DeePMD-kit package. See Model compatibility
for details.

2.6.1 Python interface

One may use the python interface of DeePMD-kit for model inference, an example is given as follows

from deepmd.infer import DeepPot
import numpy as np
dp = DeepPot('graph.pb')
coord = np.array([[1,0,0], [0,0,1.5], [1,0,3]]).reshape([1, -1])
cell = np.diag(10 * np.ones(3)).reshape([1, -1])
atype = [1,0,1]
e, f, v = dp.eval(coord, cell, atype)

where e, f and v are predicted energy, force and virial of the system, respectively.

Furthermore, one can use the python interface to calulate model deviation.

from deepmd.infer import calc_model_devi
from deepmd.infer import DeepPot as DP
import numpy as np

coord = np.array([[1,0,0], [0,0,1.5], [1,0,3]]).reshape([1, -1])
cell = np.diag(10 * np.ones(3)).reshape([1, -1])
atype = [1,0,1]
graphs = [DP("graph.000.pb"), DP("graph.001.pb")]
model_devi = calc_model_devi(coord, cell, atype, graphs)

2.6.2 C++ interface

The C++ interface of DeePMD-kit is also avaiable for model interface, which is considered faster than Python interface.
An example infer_water.cpp is given below:

#include "deepmd/DeepPot.h"

int main(){
deepmd::DeepPot dp ("graph.pb");
std::vector<double > coord = {1., 0., 0., 0., 0., 1.5, 1. ,0. ,3.};
std::vector<double > cell = {10., 0., 0., 0., 10., 0., 0., 0., 10.};
std::vector<int > atype = {1, 0, 1};
double e;
std::vector<double > f, v;
dp.compute (e, f, v, coord, atype, cell);

}

where e, f and v are predicted energy, force and virial of the system, respectively.

You can compile infer_water.cpp using gcc:
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gcc infer_water.cpp -D HIGH_PREC -L $deepmd_root/lib -L $tensorflow_root/lib -I $deepmd_
→˓root/include -I $tensorflow_root/include -Wl,--no-as-needed -ldeepmd_op -ldeepmd -
→˓ldeepmd_cc -ltensorflow_cc -ltensorflow_framework -lstdc++ -Wl,-rpath=$deepmd_root/lib␣
→˓-Wl,-rpath=$tensorflow_root/lib -o infer_water

and then run the program:

./infer_water

2.7 Run MD

Note that the model for MD simulations is required to be compatible with the DeePMD-kit package. See Model
compatibility for details.

2.7.1 Run MD with LAMMPS

Include deepmd in the pair_style

Syntax

pair_style deepmd models ... keyword value ...

• deepmd = style of this pair_style

• models = frozen model(s) to compute the interaction. If multiple models are provided, then the model deviation
will be computed

• keyword = out_file or out_freq or fparam or atomic or relative

Examples

pair_style deepmd graph.pb
pair_style deepmd graph.pb fparam 1.2
pair_style deepmd graph_0.pb graph_1.pb graph_2.pb out_file md.out out_freq 10 atomic␣
→˓relative 1.0

Description

Evaluate the interaction of the system by using Deep Potential or Deep Potential Smooth Edition. It is noticed that deep
potential is not a “pairwise” interaction, but a multi-body interaction.

This pair style takes the deep potential defined in a model file that usually has the .pb extension. The model can be
trained and frozen by package DeePMD-kit.

The model deviation evalulate the consistency of the force predictions from multiple models. By default, only the
maximal, minimal and averge model deviations are output. If the key atomic is set, then the model deviation of force
prediction of each atom will be output.

By default, the model deviation is output in absolute value. If the keyword relative is set, then the relative model
deviation will be output. The relative model deviation of the force on atom i is defined by
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|Df_i|
Ef_i = -------------

|f_i| + level

where Df_i is the absolute model deviation of the force on atom i, |f_i| is the norm of the the force and level is
provided as the parameter of the keyword relative.

Restrictions

• The deepmd pair style is provided in the USER-DEEPMD package, which is compiled from the DeePMD-kit,
visit the DeePMD-kit website for more information.

Long-range interaction

The reciprocal space part of the long-range interaction can be calculated by LAMMPS command kspace_style. To
use it with DeePMD-kit, one writes

pair_style deepmd graph.pb
pair_coeff
kspace_style pppm 1.0e-5
kspace_modify gewald 0.45

Please notice that the DeePMD does nothing to the direct space part of the electrostatic interaction, because this part
is assumed to be fitted in the DeePMD model (the direct space cut-off is thus the cut-off of the DeePMD model). The
splitting parameter gewald is modified by the kspace_modify command.

2.7.2 Run path-integral MD with i-PI

The i-PI works in a client-server model. The i-PI provides the server for integrating the replica positions of atoms, while
the DeePMD-kit provides a client named dp_ipi (or dp_ipi_low for low precision) that computes the interactions
(including energy, force and virial). The server and client communicates via the Unix domain socket or the Internet
socket. Installation instructions of i-PI can be found here. The client can be started by

i-pi input.xml &
dp_ipi water.json

It is noted that multiple instances of the client is allow for computing, in parallel, the interactions of multiple replica of
the path-integral MD.

water.json is the parameter file for the client dp_ipi, and an example is provided:

{
"verbose": false,
"use_unix": true,
"port": 31415,
"host": "localhost",
"graph_file": "graph.pb",
"coord_file": "conf.xyz",
"atom_type" : {

"OW": 0,
"HW1": 1,

(continues on next page)
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(continued from previous page)

"HW2": 1
}

}

The option use_unix is set to true to activate the Unix domain socket, otherwise, the Internet socket is used.

The option port should be the same as that in input.xml:

<port>31415</port>

The option graph_file provides the file name of the frozen model.

The dp_ipi gets the atom names from an XYZ file provided by coord_file (meanwhile ignores all coordinates in
it), and translates the names to atom types by rules provided by atom_type.

2.7.3 Use deep potential with ASE

Deep potential can be set up as a calculator with ASE to obtain potential energies and forces.

from ase import Atoms
from deepmd.calculator import DP

water = Atoms('H2O',
positions=[(0.7601, 1.9270, 1),

(1.9575, 1, 1),
(1., 1., 1.)],

cell=[100, 100, 100],
calculator=DP(model="frozen_model.pb"))

print(water.get_potential_energy())
print(water.get_forces())

Optimization is also available:

from ase.optimize import BFGS
dyn = BFGS(water)
dyn.run(fmax=1e-6)
print(water.get_positions())

2.8 Known limitations

If you use deepmd-kit in a GPU environment, the acceptable value range of some variables are additionally restricted
compared to the CPU environment due to the software’s GPU implementations:

1. The number of atom type of a given system must be less than 128.

2. The maximum distance between an atom and it’s neighbors must be less than 128. It can be controlled by setting
the rcut value of training parameters.

3. Theoretically, the maximum number of atoms that a single GPU can accept is about 10,000,000. However, this
value is actually limited by the GPU memory size currently, usually within 1000,000 atoms even at the model
compression mode.

4. The total sel value of training parameters(in model/descriptor section) must be less than 4096.
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THREE

TENSORBOARD USAGE

TensorBoard provides the visualization and tooling needed for machine learning experimentation. A full instruction of
tensorboard can be found here.

3.1 Highlighted features

DeePMD-kit can now use most of the interesting features enabled by tensorboard!

• Tracking and visualizing metrics, such as l2_loss, l2_energy_loss and l2_force_loss

• Visualizing the model graph (ops and layers)

• Viewing histograms of weights, biases, or other tensors as they change over time.

• Viewing summaries of trainable viriables

3.2 How to use Tensorboard with DeePMD-kit

Before running TensorBoard, make sure you have generated summary data in a log directory by modifying the the input
script, set “tensorboard” true in training subsection will enable the tensorboard data analysis. eg. water_se_a.json.

"training" : {
"systems": ["../data/"],
"set_prefix": "set",
"stop_batch": 1000000,
"batch_size": 1,

"seed": 1,

"_comment": " display and restart",
"_comment": " frequencies counted in batch",
"disp_file": "lcurve.out",
"disp_freq": 100,
"numb_test": 10,
"save_freq": 1000,
"save_ckpt": "model.ckpt",
"load_ckpt": "model.ckpt",
"disp_training":true,
"time_training":true,
"tensorboard": true,

(continues on next page)
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(continued from previous page)

"tensorboard_log_dir":"log",
"profiling": false,
"profiling_file":"timeline.json",
"_comment": "that's all"

}

Once you have event files, run TensorBoard and provide the log directory. This should print that TensorBoard has
started. Next, connect to http://tensorboard_server_ip:6006.

TensorBoard requires a logdir to read logs from. For info on configuring TensorBoard, run tensorboard –help. One can
easily change the log name with “tensorboard_log_dir”.

tensorboard --logdir path/to/logs

3.3 Examples

3.3.1 Tracking and visualizing loss metrics(red:train, blue:test)
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3.3.2 Visualizing deepmd-kit model graph
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3.3.3 Viewing histograms of weights, biases, or other tensors as they change over
time
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3.3.4 Viewing summaries of trainable variables

3.4 Attention

Allowing the tensorboard analysis will takes extra execution time.(eg, 15% increasing @Nvidia GTX 1080Ti double
precision with default water sample)

TensorBoard can be used in Google Chrome or Firefox. Other browsers might work, but there may be bugs or
performance issues.
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FAQS

In consequence of various differences of computers or systems, problems may occur. Some common circumstances are
listed as follows. In addition, some frequently asked questions about parameters setting are listed as follows. If other
unexpected problems occur, you’re welcome to contact us for help.

4.1 Trouble shooting

• Installation

• Model compatibility

• MD: cannot run LAMMPS after installing a new version of DeePMD-kit

• The temperature undulates violently during early stages of MD

4.2 Parameters setting

• Do we need to set rcut < half boxsize ?

• How to control the number of nodes used by a job ?

• How to set sel ?

• How to tune Fitting/embedding-net size ?
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FIVE

DATA

In this example we will convert the DFT labeled data stored in VASP OUTCAR format into the data format used by
DeePMD-kit. The example OUTCAR can be found in the directory.

$deepmd_source_dir/examples/data_conv

5.1 Definition

The DeePMD-kit organize data in systems. Each system is composed by a number of frames. One may roughly
view a frame as a snap short on an MD trajectory, but it does not necessary come from an MD simulation. A frame
records the coordinates and types of atoms, cell vectors if the periodic boundary condition is assumed, energy, atomic
forces and virial. It is noted that the frames in one system share the same number of atoms with the same type.

5.2 Data conversion

It is conveninent to use dpdata to convert data generated by DFT packages to the data format used by DeePMD-kit.

To install one can execute

pip install dpdata

An example of converting data VASP data in OUTCAR format to DeePMD-kit data can be found at

$deepmd_source_dir/examples/data_conv

Switch to that directory, then one can convert data by using the following python script

import dpdata
dsys = dpdata.LabeledSystem('OUTCAR')
dsys.to('deepmd/npy', 'deepmd_data', set_size = dsys.get_nframes())

get_nframes() method gets the number of frames in the OUTCAR, and the argument set_size enforces that the set
size is equal to the number of frames in the system, viz. only one set is created in the system.

The data in DeePMD-kit format is stored in the folder deepmd_data.

A list of all supported data format and more nice features of dpdata can be found at the official website.
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SIX

TRAINING PARAMETERS

model:

type: dict
argument path: model

type_map:

type: list, optional
argument path: model/type_map

A list of strings. Give the name to each type of atoms. It is noted that the number of atom type of training
system must be less than 128 in a GPU environment.

data_stat_nbatch:

type: int, optional, default: 10
argument path: model/data_stat_nbatch

The model determines the normalization from the statistics of the data. This key specifies the number of
frames in each system used for statistics.

data_stat_protect:

type: float, optional, default: 0.01
argument path: model/data_stat_protect

Protect parameter for atomic energy regression.

use_srtab:

type: str, optional
argument path: model/use_srtab

The table for the short-range pairwise interaction added on top of DP. The table is a text data file with (N_t
+ 1) * N_t / 2 + 1 columes. The first colume is the distance between atoms. The second to the last columes
are energies for pairs of certain types. For example we have two atom types, 0 and 1. The columes from
2nd to 4th are for 0-0, 0-1 and 1-1 correspondingly.

smin_alpha:

type: float, optional
argument path: model/smin_alpha

The short-range tabulated interaction will be swithed according to the distance of the nearest neighbor.
This distance is calculated by softmin. This parameter is the decaying parameter in the softmin. It is only
required when use_srtab is provided.

sw_rmin:
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type: float, optional
argument path: model/sw_rmin

The lower boundary of the interpolation between short-range tabulated interaction and DP. It is only re-
quired when use_srtab is provided.

sw_rmax:

type: float, optional
argument path: model/sw_rmax

The upper boundary of the interpolation between short-range tabulated interaction and DP. It is only re-
quired when use_srtab is provided.

type_embedding:

type: dict, optional
argument path: model/type_embedding

The type embedding.

neuron:

type: list, optional, default: [2, 4, 8]

argument path: model/type_embedding/neuron

Number of neurons in each hidden layers of the embedding net. When two layers are of the same size
or one layer is twice as large as the previous layer, a skip connection is built.

activation_function:

type: str, optional, default: tanh
argument path: model/type_embedding/activation_function

The activation function in the embedding net. Supported activation functions are “relu”, “relu6”,
“softplus”, “sigmoid”, “tanh”, “gelu”.

resnet_dt:

type: bool, optional, default: False
argument path: model/type_embedding/resnet_dt

Whether to use a “Timestep” in the skip connection

precision:

type: str, optional, default: float64
argument path: model/type_embedding/precision

The precision of the embedding net parameters, supported options are “default”, “float16”, “float32”,
“float64”.

trainable:

type: bool, optional, default: True
argument path: model/type_embedding/trainable

If the parameters in the embedding net are trainable

seed:

type: int | NoneType, optional
argument path: model/type_embedding/seed

Random seed for parameter initialization
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descriptor:

type: dict
argument path: model/descriptor

The descriptor of atomic environment.

Depending on the value of type, different sub args are accepted.

type:

type: str (flag key)
argument path: model/descriptor/type
possible choices: loc_frame, se_e2_a, se_e2_r, se_e3, se_a_tpe, hybrid

The type of the descritpor. See explanation below.

• loc_frame: Defines a local frame at each atom, and the compute the descriptor as local coordinates
under this frame.

• se_e2_a: Used by the smooth edition of Deep Potential. The full relative coordinates are used to
construct the descriptor.

• se_e2_r: Used by the smooth edition of Deep Potential. Only the distance between atoms is used
to construct the descriptor.

• se_e3: Used by the smooth edition of Deep Potential. The full relative coordinates are used to
construct the descriptor. Three-body embedding will be used by this descriptor.

• se_a_tpe: Used by the smooth edition of Deep Potential. The full relative coordinates are used to
construct the descriptor. Type embedding will be used by this descriptor.

• hybrid: Concatenate of a list of descriptors as a new descriptor.

When type is set to loc_frame:

sel_a:

type: list
argument path: model/descriptor[loc_frame]/sel_a

A list of integers. The length of the list should be the same as the number of atom types in the system.
sel_a[i] gives the selected number of type-i neighbors. The full relative coordinates of the neighbors
are used by the descriptor.

sel_r:

type: list
argument path: model/descriptor[loc_frame]/sel_r

A list of integers. The length of the list should be the same as the number of atom types in the system.
sel_r[i] gives the selected number of type-i neighbors. Only relative distance of the neighbors are used
by the descriptor. sel_a[i] + sel_r[i] is recommended to be larger than the maximally possible number
of type-i neighbors in the cut-off radius.

rcut:

type: float, optional, default: 6.0
argument path: model/descriptor[loc_frame]/rcut

The cut-off radius. The default value is 6.0

axis_rule:

type: list
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argument path: model/descriptor[loc_frame]/axis_rule

A list of integers. The length should be 6 times of the number of types.

• axis_rule[i*6+0]: class of the atom defining the first axis of type-i atom. 0 for neighbors with full
coordinates and 1 for neighbors only with relative distance.

• axis_rule[i*6+1]: type of the atom defining the first axis of type-i atom.

• axis_rule[i*6+2]: index of the axis atom defining the first axis. Note that the neighbors with the
same class and type are sorted according to their relative distance.

• axis_rule[i*6+3]: class of the atom defining the first axis of type-i atom. 0 for neighbors with full
coordinates and 1 for neighbors only with relative distance.

• axis_rule[i*6+4]: type of the atom defining the second axis of type-i atom.

• axis_rule[i*6+5]: class of the atom defining the second axis of type-i atom. 0 for neighbors with
full coordinates and 1 for neighbors only with relative distance.

When type is set to se_e2_a (or its alias se_a):

sel:

type: list | str, optional, default: auto
argument path: model/descriptor[se_e2_a]/sel

This parameter set the number of selected neighbors for each type of atom. It can be:

• List[int]. The length of the list should be the same as the number of atom types in the system.
sel[i] gives the selected number of type-i neighbors. sel[i] is recommended to be larger than the
maximally possible number of type-i neighbors in the cut-off radius. It is noted that the total sel
value must be less than 4096 in a GPU environment.

• str. Can be “auto:factor” or “auto”. “factor” is a float number larger than 1. This option will
automatically determine the sel. In detail it counts the maximal number of neighbors with in the
cutoff radius for each type of neighbor, then multiply the maximum by the “factor”. Finally the
number is wraped up to 4 divisible. The option “auto” is equivalent to “auto:1.1”.

rcut:

type: float, optional, default: 6.0
argument path: model/descriptor[se_e2_a]/rcut

The cut-off radius.

rcut_smth:

type: float, optional, default: 0.5
argument path: model/descriptor[se_e2_a]/rcut_smth

Where to start smoothing. For example the 1/r term is smoothed from rcut to rcut_smth

neuron:

type: list, optional, default: [10, 20, 40]

argument path: model/descriptor[se_e2_a]/neuron

Number of neurons in each hidden layers of the embedding net. When two layers are of the same size
or one layer is twice as large as the previous layer, a skip connection is built.

axis_neuron:

type: int, optional, default: 4
argument path: model/descriptor[se_e2_a]/axis_neuron
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Size of the submatrix of G (embedding matrix).

activation_function:

type: str, optional, default: tanh
argument path: model/descriptor[se_e2_a]/activation_function

The activation function in the embedding net. Supported activation functions are “relu”, “relu6”,
“softplus”, “sigmoid”, “tanh”, “gelu”.

resnet_dt:

type: bool, optional, default: False
argument path: model/descriptor[se_e2_a]/resnet_dt

Whether to use a “Timestep” in the skip connection

type_one_side:

type: bool, optional, default: False
argument path: model/descriptor[se_e2_a]/type_one_side

Try to build N_types embedding nets. Otherwise, building N_types^2 embedding nets

precision:

type: str, optional, default: float64
argument path: model/descriptor[se_e2_a]/precision

The precision of the embedding net parameters, supported options are “default”, “float16”, “float32”,
“float64”.

trainable:

type: bool, optional, default: True
argument path: model/descriptor[se_e2_a]/trainable

If the parameters in the embedding net is trainable

seed:

type: int | NoneType, optional
argument path: model/descriptor[se_e2_a]/seed

Random seed for parameter initialization

exclude_types:

type: list, optional, default: []
argument path: model/descriptor[se_e2_a]/exclude_types

The Excluded types

set_davg_zero:

type: bool, optional, default: False
argument path: model/descriptor[se_e2_a]/set_davg_zero

Set the normalization average to zero. This option should be set when atom_ener in the energy fitting
is used

When type is set to se_e2_r (or its alias se_r):

sel:

type: list | str, optional, default: auto
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argument path: model/descriptor[se_e2_r]/sel

This parameter set the number of selected neighbors for each type of atom. It can be:

• List[int]. The length of the list should be the same as the number of atom types in the system.
sel[i] gives the selected number of type-i neighbors. sel[i] is recommended to be larger than the
maximally possible number of type-i neighbors in the cut-off radius. It is noted that the total sel
value must be less than 4096 in a GPU environment.

• str. Can be “auto:factor” or “auto”. “factor” is a float number larger than 1. This option will
automatically determine the sel. In detail it counts the maximal number of neighbors with in the
cutoff radius for each type of neighbor, then multiply the maximum by the “factor”. Finally the
number is wraped up to 4 divisible. The option “auto” is equivalent to “auto:1.1”.

rcut:

type: float, optional, default: 6.0
argument path: model/descriptor[se_e2_r]/rcut

The cut-off radius.

rcut_smth:

type: float, optional, default: 0.5
argument path: model/descriptor[se_e2_r]/rcut_smth

Where to start smoothing. For example the 1/r term is smoothed from rcut to rcut_smth

neuron:

type: list, optional, default: [10, 20, 40]

argument path: model/descriptor[se_e2_r]/neuron

Number of neurons in each hidden layers of the embedding net. When two layers are of the same size
or one layer is twice as large as the previous layer, a skip connection is built.

activation_function:

type: str, optional, default: tanh
argument path: model/descriptor[se_e2_r]/activation_function

The activation function in the embedding net. Supported activation functions are “relu”, “relu6”,
“softplus”, “sigmoid”, “tanh”, “gelu”.

resnet_dt:

type: bool, optional, default: False
argument path: model/descriptor[se_e2_r]/resnet_dt

Whether to use a “Timestep” in the skip connection

type_one_side:

type: bool, optional, default: False
argument path: model/descriptor[se_e2_r]/type_one_side

Try to build N_types embedding nets. Otherwise, building N_types^2 embedding nets

precision:

type: str, optional, default: float64
argument path: model/descriptor[se_e2_r]/precision

The precision of the embedding net parameters, supported options are “default”, “float16”, “float32”,
“float64”.
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trainable:

type: bool, optional, default: True
argument path: model/descriptor[se_e2_r]/trainable

If the parameters in the embedding net are trainable

seed:

type: int | NoneType, optional
argument path: model/descriptor[se_e2_r]/seed

Random seed for parameter initialization

exclude_types:

type: list, optional, default: []
argument path: model/descriptor[se_e2_r]/exclude_types

The Excluded types

set_davg_zero:

type: bool, optional, default: False
argument path: model/descriptor[se_e2_r]/set_davg_zero

Set the normalization average to zero. This option should be set when atom_ener in the energy fitting
is used

When type is set to se_e3 (or its aliases se_at, se_a_3be, se_t):

sel:

type: list | str, optional, default: auto
argument path: model/descriptor[se_e3]/sel

This parameter set the number of selected neighbors for each type of atom. It can be:

• List[int]. The length of the list should be the same as the number of atom types in the system.
sel[i] gives the selected number of type-i neighbors. sel[i] is recommended to be larger than the
maximally possible number of type-i neighbors in the cut-off radius. It is noted that the total sel
value must be less than 4096 in a GPU environment.

• str. Can be “auto:factor” or “auto”. “factor” is a float number larger than 1. This option will
automatically determine the sel. In detail it counts the maximal number of neighbors with in the
cutoff radius for each type of neighbor, then multiply the maximum by the “factor”. Finally the
number is wraped up to 4 divisible. The option “auto” is equivalent to “auto:1.1”.

rcut:

type: float, optional, default: 6.0
argument path: model/descriptor[se_e3]/rcut

The cut-off radius.

rcut_smth:

type: float, optional, default: 0.5
argument path: model/descriptor[se_e3]/rcut_smth

Where to start smoothing. For example the 1/r term is smoothed from rcut to rcut_smth

neuron:

type: list, optional, default: [10, 20, 40]
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argument path: model/descriptor[se_e3]/neuron

Number of neurons in each hidden layers of the embedding net. When two layers are of the same size
or one layer is twice as large as the previous layer, a skip connection is built.

activation_function:

type: str, optional, default: tanh
argument path: model/descriptor[se_e3]/activation_function

The activation function in the embedding net. Supported activation functions are “relu”, “relu6”,
“softplus”, “sigmoid”, “tanh”, “gelu”.

resnet_dt:

type: bool, optional, default: False
argument path: model/descriptor[se_e3]/resnet_dt

Whether to use a “Timestep” in the skip connection

precision:

type: str, optional, default: float64
argument path: model/descriptor[se_e3]/precision

The precision of the embedding net parameters, supported options are “default”, “float16”, “float32”,
“float64”.

trainable:

type: bool, optional, default: True
argument path: model/descriptor[se_e3]/trainable

If the parameters in the embedding net are trainable

seed:

type: int | NoneType, optional
argument path: model/descriptor[se_e3]/seed

Random seed for parameter initialization

set_davg_zero:

type: bool, optional, default: False
argument path: model/descriptor[se_e3]/set_davg_zero

Set the normalization average to zero. This option should be set when atom_ener in the energy fitting
is used

When type is set to se_a_tpe (or its alias se_a_ebd):

sel:

type: list | str, optional, default: auto
argument path: model/descriptor[se_a_tpe]/sel

This parameter set the number of selected neighbors for each type of atom. It can be:

• List[int]. The length of the list should be the same as the number of atom types in the system.
sel[i] gives the selected number of type-i neighbors. sel[i] is recommended to be larger than the
maximally possible number of type-i neighbors in the cut-off radius. It is noted that the total sel
value must be less than 4096 in a GPU environment.
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• str. Can be “auto:factor” or “auto”. “factor” is a float number larger than 1. This option will
automatically determine the sel. In detail it counts the maximal number of neighbors with in the
cutoff radius for each type of neighbor, then multiply the maximum by the “factor”. Finally the
number is wraped up to 4 divisible. The option “auto” is equivalent to “auto:1.1”.

rcut:

type: float, optional, default: 6.0
argument path: model/descriptor[se_a_tpe]/rcut

The cut-off radius.

rcut_smth:

type: float, optional, default: 0.5
argument path: model/descriptor[se_a_tpe]/rcut_smth

Where to start smoothing. For example the 1/r term is smoothed from rcut to rcut_smth

neuron:

type: list, optional, default: [10, 20, 40]

argument path: model/descriptor[se_a_tpe]/neuron

Number of neurons in each hidden layers of the embedding net. When two layers are of the same size
or one layer is twice as large as the previous layer, a skip connection is built.

axis_neuron:

type: int, optional, default: 4
argument path: model/descriptor[se_a_tpe]/axis_neuron

Size of the submatrix of G (embedding matrix).

activation_function:

type: str, optional, default: tanh
argument path: model/descriptor[se_a_tpe]/activation_function

The activation function in the embedding net. Supported activation functions are “relu”, “relu6”,
“softplus”, “sigmoid”, “tanh”, “gelu”.

resnet_dt:

type: bool, optional, default: False
argument path: model/descriptor[se_a_tpe]/resnet_dt

Whether to use a “Timestep” in the skip connection

type_one_side:

type: bool, optional, default: False
argument path: model/descriptor[se_a_tpe]/type_one_side

Try to build N_types embedding nets. Otherwise, building N_types^2 embedding nets

precision:

type: str, optional, default: float64
argument path: model/descriptor[se_a_tpe]/precision

The precision of the embedding net parameters, supported options are “default”, “float16”, “float32”,
“float64”.

trainable:
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type: bool, optional, default: True
argument path: model/descriptor[se_a_tpe]/trainable

If the parameters in the embedding net is trainable

seed:

type: int | NoneType, optional
argument path: model/descriptor[se_a_tpe]/seed

Random seed for parameter initialization

exclude_types:

type: list, optional, default: []
argument path: model/descriptor[se_a_tpe]/exclude_types

The Excluded types

set_davg_zero:

type: bool, optional, default: False
argument path: model/descriptor[se_a_tpe]/set_davg_zero

Set the normalization average to zero. This option should be set when atom_ener in the energy fitting
is used

type_nchanl:

type: int, optional, default: 4
argument path: model/descriptor[se_a_tpe]/type_nchanl

number of channels for type embedding

type_nlayer:

type: int, optional, default: 2
argument path: model/descriptor[se_a_tpe]/type_nlayer

number of hidden layers of type embedding net

numb_aparam:

type: int, optional, default: 0
argument path: model/descriptor[se_a_tpe]/numb_aparam

dimension of atomic parameter. if set to a value > 0, the atomic parameters are embedded.

When type is set to hybrid:

list:

type: list
argument path: model/descriptor[hybrid]/list

A list of descriptor definitions

fitting_net:

type: dict
argument path: model/fitting_net

The fitting of physical properties.

Depending on the value of type, different sub args are accepted.

type:
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type: str (flag key), default: ener
argument path: model/fitting_net/type
possible choices: ener, dipole, polar

The type of the fitting. See explanation below.

• ener: Fit an energy model (potential energy surface).

• dipole: Fit an atomic dipole model. Global dipole labels or atomic dipole labels for all the selected
atoms (see sel_type) should be provided by dipole.npy in each data system. The file either has
number of frames lines and 3 times of number of selected atoms columns, or has number of frames
lines and 3 columns. See loss parameter.

• polar: Fit an atomic polarizability model. Global polarizazbility labels or atomic polarizability
labels for all the selected atoms (see sel_type) should be provided by polarizability.npy in each
data system. The file eith has number of frames lines and 9 times of number of selected atoms
columns, or has number of frames lines and 9 columns. See loss parameter.

When type is set to ener:

numb_fparam:

type: int, optional, default: 0
argument path: model/fitting_net[ener]/numb_fparam

The dimension of the frame parameter. If set to >0, file fparam.npy should be included to provided the
input fparams.

numb_aparam:

type: int, optional, default: 0
argument path: model/fitting_net[ener]/numb_aparam

The dimension of the atomic parameter. If set to >0, file aparam.npy should be included to provided
the input aparams.

neuron:

type: list, optional, default: [120, 120, 120]

argument path: model/fitting_net[ener]/neuron

The number of neurons in each hidden layers of the fitting net. When two hidden layers are of the same
size, a skip connection is built.

activation_function:

type: str, optional, default: tanh
argument path: model/fitting_net[ener]/activation_function

The activation function in the fitting net. Supported activation functions are “relu”, “relu6”, “softplus”,
“sigmoid”, “tanh”, “gelu”.

precision:

type: str, optional, default: float64
argument path: model/fitting_net[ener]/precision

The precision of the fitting net parameters, supported options are “default”, “float16”, “float32”,
“float64”.

resnet_dt:

type: bool, optional, default: True
argument path: model/fitting_net[ener]/resnet_dt
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Whether to use a “Timestep” in the skip connection

trainable:

type: list | bool, optional, default: True
argument path: model/fitting_net[ener]/trainable

Whether the parameters in the fitting net are trainable. This option can be

• bool: True if all parameters of the fitting net are trainable, False otherwise.

• list of bool: Specifies if each layer is trainable. Since the fitting net is composed by hidden layers
followed by a output layer, the length of tihs list should be equal to len(neuron)+1.

rcond:

type: float, optional, default: 0.001
argument path: model/fitting_net[ener]/rcond

The condition number used to determine the inital energy shift for each type of atoms.

seed:

type: int | NoneType, optional
argument path: model/fitting_net[ener]/seed

Random seed for parameter initialization of the fitting net

atom_ener:

type: list, optional, default: []
argument path: model/fitting_net[ener]/atom_ener

Specify the atomic energy in vacuum for each type

When type is set to dipole:

neuron:

type: list, optional, default: [120, 120, 120]

argument path: model/fitting_net[dipole]/neuron

The number of neurons in each hidden layers of the fitting net. When two hidden layers are of the same
size, a skip connection is built.

activation_function:

type: str, optional, default: tanh
argument path: model/fitting_net[dipole]/activation_function

The activation function in the fitting net. Supported activation functions are “relu”, “relu6”, “softplus”,
“sigmoid”, “tanh”, “gelu”.

resnet_dt:

type: bool, optional, default: True
argument path: model/fitting_net[dipole]/resnet_dt

Whether to use a “Timestep” in the skip connection

precision:

type: str, optional, default: float64
argument path: model/fitting_net[dipole]/precision

46 Chapter 6. Training Parameters



DeePMD-kit

The precision of the fitting net parameters, supported options are “default”, “float16”, “float32”,
“float64”.

sel_type:

type: list | int | NoneType, optional
argument path: model/fitting_net[dipole]/sel_type

The atom types for which the atomic dipole will be provided. If not set, all types will be selected.

seed:

type: int | NoneType, optional
argument path: model/fitting_net[dipole]/seed

Random seed for parameter initialization of the fitting net

When type is set to polar:

neuron:

type: list, optional, default: [120, 120, 120]

argument path: model/fitting_net[polar]/neuron

The number of neurons in each hidden layers of the fitting net. When two hidden layers are of the same
size, a skip connection is built.

activation_function:

type: str, optional, default: tanh
argument path: model/fitting_net[polar]/activation_function

The activation function in the fitting net. Supported activation functions are “relu”, “relu6”, “softplus”,
“sigmoid”, “tanh”, “gelu”.

resnet_dt:

type: bool, optional, default: True
argument path: model/fitting_net[polar]/resnet_dt

Whether to use a “Timestep” in the skip connection

precision:

type: str, optional, default: float64
argument path: model/fitting_net[polar]/precision

The precision of the fitting net parameters, supported options are “default”, “float16”, “float32”,
“float64”.

fit_diag:

type: bool, optional, default: True
argument path: model/fitting_net[polar]/fit_diag

Fit the diagonal part of the rotational invariant polarizability matrix, which will be converted to normal
polarizability matrix by contracting with the rotation matrix.

scale:

type: list | float, optional, default: 1.0
argument path: model/fitting_net[polar]/scale

The output of the fitting net (polarizability matrix) will be scaled by scale

shift_diag:

47



DeePMD-kit

type: bool, optional, default: True
argument path: model/fitting_net[polar]/shift_diag

Whether to shift the diagonal of polar, which is beneficial to training. Default is true.

sel_type:

type: list | int | NoneType, optional
argument path: model/fitting_net[polar]/sel_type

The atom types for which the atomic polarizability will be provided. If not set, all types will be selected.

seed:

type: int | NoneType, optional
argument path: model/fitting_net[polar]/seed

Random seed for parameter initialization of the fitting net

modifier:

type: dict, optional
argument path: model/modifier

The modifier of model output.

Depending on the value of type, different sub args are accepted.

type:

type: str (flag key)
argument path: model/modifier/type
possible choices: dipole_charge

The type of modifier. See explanation below.

-dipole_charge: Use WFCC to model the electronic structure of the system. Correct the long-range
interaction

When type is set to dipole_charge:

model_name:

type: str
argument path: model/modifier[dipole_charge]/model_name

The name of the frozen dipole model file.

model_charge_map:

type: list
argument path: model/modifier[dipole_charge]/model_charge_map

The charge of the WFCC. The list length should be the same as the sel_type.

sys_charge_map:

type: list
argument path: model/modifier[dipole_charge]/sys_charge_map

The charge of real atoms. The list length should be the same as the type_map

ewald_beta:

type: float, optional, default: 0.4
argument path: model/modifier[dipole_charge]/ewald_beta
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The splitting parameter of Ewald sum. Unit is A^-1

ewald_h:

type: float, optional, default: 1.0
argument path: model/modifier[dipole_charge]/ewald_h

The grid spacing of the FFT grid. Unit is A

compress:

type: dict, optional
argument path: model/compress

Model compression configurations

Depending on the value of type, different sub args are accepted.

type:

type: str (flag key), default: se_e2_a
argument path: model/compress/type
possible choices: se_e2_a

The type of model compression, which should be consistent with the descriptor type.

When type is set to se_e2_a (or its alias se_a):

compress:

type: bool
argument path: model/compress[se_e2_a]/compress

The name of the frozen model file.

model_file:

type: str
argument path: model/compress[se_e2_a]/model_file

The input model file, which will be compressed by the DeePMD-kit.

table_config:

type: list
argument path: model/compress[se_e2_a]/table_config

The arguments of model compression, including extrapolate(scale of model extrapolation),
stride(uniform stride of tabulation’s first and second table), and frequency(frequency of tabulation
overflow check).

loss:

type: dict, optional
argument path: loss

The definition of loss function. The loss type should be set to tensor, ener or left unset. .

Depending on the value of type, different sub args are accepted.

type:

type: str (flag key), default: ener
argument path: loss/type
possible choices: ener, tensor
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The type of the loss. When the fitting type is ener, the loss type should be set to ener or left unset. When
the fitting type is dipole or polar, the loss type should be set to tensor. .

When type is set to ener:

start_pref_e:

type: int | float, optional, default: 0.02
argument path: loss[ener]/start_pref_e

The prefactor of energy loss at the start of the training. Should be larger than or equal to 0. If set to none-zero
value, the energy label should be provided by file energy.npy in each data system. If both start_pref_energy
and limit_pref_energy are set to 0, then the energy will be ignored.

limit_pref_e:

type: int | float, optional, default: 1.0
argument path: loss[ener]/limit_pref_e

The prefactor of energy loss at the limit of the training, Should be larger than or equal to 0. i.e. the training
step goes to infinity.

start_pref_f:

type: int | float, optional, default: 1000
argument path: loss[ener]/start_pref_f

The prefactor of force loss at the start of the training. Should be larger than or equal to 0. If set to none-zero
value, the force label should be provided by file force.npy in each data system. If both start_pref_force and
limit_pref_force are set to 0, then the force will be ignored.

limit_pref_f:

type: int | float, optional, default: 1.0
argument path: loss[ener]/limit_pref_f

The prefactor of force loss at the limit of the training, Should be larger than or equal to 0. i.e. the training
step goes to infinity.

start_pref_v:

type: int | float, optional, default: 0.0
argument path: loss[ener]/start_pref_v

The prefactor of virial loss at the start of the training. Should be larger than or equal to 0. If set to none-zero
value, the virial label should be provided by file virial.npy in each data system. If both start_pref_virial and
limit_pref_virial are set to 0, then the virial will be ignored.

limit_pref_v:

type: int | float, optional, default: 0.0
argument path: loss[ener]/limit_pref_v

The prefactor of virial loss at the limit of the training, Should be larger than or equal to 0. i.e. the training
step goes to infinity.

start_pref_ae:

type: int | float, optional, default: 0.0
argument path: loss[ener]/start_pref_ae

The prefactor of atom_ener loss at the start of the training. Should be larger than or equal to 0. If set to
none-zero value, the atom_ener label should be provided by file atom_ener.npy in each data system. If both
start_pref_atom_ener and limit_pref_atom_ener are set to 0, then the atom_ener will be ignored.
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limit_pref_ae:

type: int | float, optional, default: 0.0
argument path: loss[ener]/limit_pref_ae

The prefactor of atom_ener loss at the limit of the training, Should be larger than or equal to 0. i.e. the
training step goes to infinity.

relative_f:

type: float | NoneType, optional
argument path: loss[ener]/relative_f

If provided, relative force error will be used in the loss. The difference of force will be normalized by the
magnitude of the force in the label with a shift given by relative_f, i.e. DF_i / ( || F || + relative_f ) with DF
denoting the difference between prediction and label and || F || denoting the L2 norm of the label.

When type is set to tensor:

pref:

type: int | float
argument path: loss[tensor]/pref

The prefactor of the weight of global loss. It should be larger than or equal to 0. If controls the weight of
loss corresponding to global label, i.e. ‘polarizability.npy` or dipole.npy, whose shape should be #frames
x [9 or 3]. If it’s larger than 0.0, this npy should be included.

pref_atomic:

type: int | float
argument path: loss[tensor]/pref_atomic

The prefactor of the weight of atomic loss. It should be larger than or equal to 0. If controls the weight
of loss corresponding to atomic label, i.e. atomic_polarizability.npy or atomic_dipole.npy, whose shape
should be #frames x ([9 or 3] x #selected atoms). If it’s larger than 0.0, this npy should be included. Both
pref and pref_atomic should be provided, and either can be set to 0.0.

learning_rate:

type: dict
argument path: learning_rate

The definitio of learning rate

Depending on the value of type, different sub args are accepted.

type:

type: str (flag key), default: exp
argument path: learning_rate/type
possible choices: exp

The type of the learning rate.

When type is set to exp:

start_lr:

type: float, optional, default: 0.001
argument path: learning_rate[exp]/start_lr

The learning rate the start of the training.

stop_lr:
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type: float, optional, default: 1e-08
argument path: learning_rate[exp]/stop_lr

The desired learning rate at the end of the training.

decay_steps:

type: int, optional, default: 5000
argument path: learning_rate[exp]/decay_steps

The learning rate is decaying every this number of training steps.

training:

type: dict
argument path: training

The training options.

training_data:

type: dict
argument path: training/training_data

Configurations of training data.

systems:

type: list | str
argument path: training/training_data/systems

The data systems for training. This key can be provided with a list that specifies the systems, or
be provided with a string by which the prefix of all systems are given and the list of the systems is
automatically generated.

set_prefix:

type: str, optional, default: set
argument path: training/training_data/set_prefix

The prefix of the sets in the systems.

batch_size:

type: list | str | int, optional, default: auto
argument path: training/training_data/batch_size

This key can be

• list: the length of which is the same as the systems. The batch size of each system is given by the
elements of the list.

• int: all systems use the same batch size.

• string “auto”: automatically determines the batch size so that the batch_size times the number of
atoms in the system is no less than 32.

• string “auto:N”: automatically determines the batch size so that the batch_size times the number
of atoms in the system is no less than N.

auto_prob:

type: str, optional, default: prob_sys_size, alias: auto_prob_style
argument path: training/training_data/auto_prob

Determine the probability of systems automatically. The method is assigned by this key and can be
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• “prob_uniform” : the probability all the systems are equal, namely 1.0/self.get_nsystems()

• “prob_sys_size” : the probability of a system is proportional to the number of batches in the system

• “prob_sys_size;stt_idx:end_idx:weight;stt_idx:end_idx:weight;. . . ” : the list of systems is devided
into blocks. A block is specified by stt_idx:end_idx:weight, where stt_idx is the starting index
of the system, end_idx is then ending (not including) index of the system, the probabilities of
the systems in this block sums up to weight, and the relatively probabilities within this block is
proportional to the number of batches in the system.

sys_probs:

type: list | NoneType, optional, default: None, alias: sys_weights
argument path: training/training_data/sys_probs

A list of float if specified. Should be of the same length as systems, specifying the probability of each
system.

validation_data:

type: dict | NoneType, optional, default: None
argument path: training/validation_data

Configurations of validation data. Similar to that of training data, except that a numb_btch argument may
be configured

systems:

type: list | str
argument path: training/validation_data/systems

The data systems for validation. This key can be provided with a list that specifies the systems, or
be provided with a string by which the prefix of all systems are given and the list of the systems is
automatically generated.

set_prefix:

type: str, optional, default: set
argument path: training/validation_data/set_prefix

The prefix of the sets in the systems.

batch_size:

type: list | str | int, optional, default: auto
argument path: training/validation_data/batch_size

This key can be

• list: the length of which is the same as the systems. The batch size of each system is given by the
elements of the list.

• int: all systems use the same batch size.

• string “auto”: automatically determines the batch size so that the batch_size times the number of
atoms in the system is no less than 32.

• string “auto:N”: automatically determines the batch size so that the batch_size times the number
of atoms in the system is no less than N.

auto_prob:

type: str, optional, default: prob_sys_size, alias: auto_prob_style
argument path: training/validation_data/auto_prob
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Determine the probability of systems automatically. The method is assigned by this key and can be

• “prob_uniform” : the probability all the systems are equal, namely 1.0/self.get_nsystems()

• “prob_sys_size” : the probability of a system is proportional to the number of batches in the system

• “prob_sys_size;stt_idx:end_idx:weight;stt_idx:end_idx:weight;. . . ” : the list of systems is devided
into blocks. A block is specified by stt_idx:end_idx:weight, where stt_idx is the starting index
of the system, end_idx is then ending (not including) index of the system, the probabilities of
the systems in this block sums up to weight, and the relatively probabilities within this block is
proportional to the number of batches in the system.

sys_probs:

type: list | NoneType, optional, default: None, alias: sys_weights
argument path: training/validation_data/sys_probs

A list of float if specified. Should be of the same length as systems, specifying the probability of each
system.

numb_btch:

type: int, optional, default: 1, alias: numb_batch
argument path: training/validation_data/numb_btch

An integer that specifies the number of systems to be sampled for each validation period.

numb_steps:

type: int, alias: stop_batch
argument path: training/numb_steps

Number of training batch. Each training uses one batch of data.

seed:

type: int | NoneType, optional
argument path: training/seed

The random seed for getting frames from the training data set.

disp_file:

type: str, optional, default: lcueve.out
argument path: training/disp_file

The file for printing learning curve.

disp_freq:

type: int, optional, default: 1000
argument path: training/disp_freq

The frequency of printing learning curve.

numb_test:

type: list | str | int, optional, default: 1
argument path: training/numb_test

Number of frames used for the test during training.

save_freq:

type: int, optional, default: 1000
argument path: training/save_freq

54 Chapter 6. Training Parameters



DeePMD-kit

The frequency of saving check point.

save_ckpt:

type: str, optional, default: model.ckpt
argument path: training/save_ckpt

The file name of saving check point.

disp_training:

type: bool, optional, default: True
argument path: training/disp_training

Displaying verbose information during training.

time_training:

type: bool, optional, default: True
argument path: training/time_training

Timing durining training.

profiling:

type: bool, optional, default: False
argument path: training/profiling

Profiling during training.

profiling_file:

type: str, optional, default: timeline.json
argument path: training/profiling_file

Output file for profiling.

tensorboard:

type: bool, optional, default: False
argument path: training/tensorboard

Enable tensorboard

tensorboard_log_dir:

type: str, optional, default: log
argument path: training/tensorboard_log_dir

The log directory of tensorboard outputs
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CHAPTER

SEVEN

DEVELOPER GUIDE

• Python API

• C++ API

• Coding Conventions

• Atom Type Embedding
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CHAPTER

EIGHT

LICENSE

The project DeePMD-kit is licensed under GNU LGPLv3.0.
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CHAPTER

NINE

AUTHORS AND CREDITS

9.1 Package Contributors

• amacadmus

• AnguseZhang

• denghuilu

• bwang-ecnu

• frankhan91

• GeiduanLiu

• gzq942560379

• haidi-ustc

• hlyang1992

• hsulab

• iProzd

• JiabinYang

• marian-code

• njzjz

• tuoping

• wsyxbcl

• y1xiaoc

• YWolfeee

• zhouwei25

• ZiyaoLi
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9.2 Other Credits

• Zhang ZiXuan for designing the Deepmodeling logo.

• Everyone on the Deepmodeling mailing list for contributing to many discussions and decisions!

(If you have contributed to the deepmd-kit core package and your name is missing, please send an email to the
contributors, or open a pull request in the deepmd-kit repository)

• genindex

• modindex

• search
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