Source code for deepmd.dpmodel.descriptor.se_e2_a

# SPDX-License-Identifier: LGPL-3.0-or-later
import itertools

import numpy as np

from deepmd.dpmodel.utils.update_sel import (
    UpdateSel,
)
from deepmd.env import (
    GLOBAL_NP_FLOAT_PRECISION,
)
from deepmd.utils.path import (
    DPPath,
)
from deepmd.utils.version import (
    check_version_compatibility,
)

try:
    from deepmd._version import version as __version__
except ImportError:
[docs] __version__ = "unknown"
import copy from typing import ( Any, List, Optional, Tuple, ) from deepmd.dpmodel import ( DEFAULT_PRECISION, PRECISION_DICT, NativeOP, ) from deepmd.dpmodel.utils import ( EmbeddingNet, EnvMat, NetworkCollection, PairExcludeMask, ) from .base_descriptor import ( BaseDescriptor, ) @BaseDescriptor.register("se_e2_a") @BaseDescriptor.register("se_a")
[docs] class DescrptSeA(NativeOP, BaseDescriptor): r"""DeepPot-SE constructed from all information (both angular and radial) of atomic configurations. The embedding takes the distance between atoms as input. The descriptor :math:`\mathcal{D}^i \in \mathcal{R}^{M_1 \times M_2}` is given by [1]_ .. math:: \mathcal{D}^i = (\mathcal{G}^i)^T \mathcal{R}^i (\mathcal{R}^i)^T \mathcal{G}^i_< where :math:`\mathcal{R}^i \in \mathbb{R}^{N \times 4}` is the coordinate matrix, and each row of :math:`\mathcal{R}^i` can be constructed as follows .. math:: (\mathcal{R}^i)_j = [ \begin{array}{c} s(r_{ji}) & \frac{s(r_{ji})x_{ji}}{r_{ji}} & \frac{s(r_{ji})y_{ji}}{r_{ji}} & \frac{s(r_{ji})z_{ji}}{r_{ji}} \end{array} ] where :math:`\mathbf{R}_{ji}=\mathbf{R}_j-\mathbf{R}_i = (x_{ji}, y_{ji}, z_{ji})` is the relative coordinate and :math:`r_{ji}=\lVert \mathbf{R}_{ji} \lVert` is its norm. The switching function :math:`s(r)` is defined as: .. math:: s(r)= \begin{cases} \frac{1}{r}, & r<r_s \\ \frac{1}{r} \{ {(\frac{r - r_s}{ r_c - r_s})}^3 (-6 {(\frac{r - r_s}{ r_c - r_s})}^2 +15 \frac{r - r_s}{ r_c - r_s} -10) +1 \}, & r_s \leq r<r_c \\ 0, & r \geq r_c \end{cases} Each row of the embedding matrix :math:`\mathcal{G}^i \in \mathbb{R}^{N \times M_1}` consists of outputs of a embedding network :math:`\mathcal{N}` of :math:`s(r_{ji})`: .. math:: (\mathcal{G}^i)_j = \mathcal{N}(s(r_{ji})) :math:`\mathcal{G}^i_< \in \mathbb{R}^{N \times M_2}` takes first :math:`M_2` columns of :math:`\mathcal{G}^i`. The equation of embedding network :math:`\mathcal{N}` can be found at :meth:`deepmd.tf.utils.network.embedding_net`. Parameters ---------- rcut The cut-off radius :math:`r_c` rcut_smth From where the environment matrix should be smoothed :math:`r_s` sel : list[int] sel[i] specifies the maxmum number of type i atoms in the cut-off radius neuron : list[int] Number of neurons in each hidden layers of the embedding net :math:`\mathcal{N}` axis_neuron Number of the axis neuron :math:`M_2` (number of columns of the sub-matrix of the embedding matrix) resnet_dt Time-step `dt` in the resnet construction: y = x + dt * \phi (Wx + b) trainable If the weights of embedding net are trainable. type_one_side Try to build N_types embedding nets. Otherwise, building N_types^2 embedding nets exclude_types : List[List[int]] The excluded pairs of types which have no interaction with each other. For example, `[[0, 1]]` means no interaction between type 0 and type 1. env_protection: float Protection parameter to prevent division by zero errors during environment matrix calculations. set_davg_zero Set the shift of embedding net input to zero. activation_function The activation function in the embedding net. Supported options are |ACTIVATION_FN| precision The precision of the embedding net parameters. Supported options are |PRECISION| multi_task If the model has multi fitting nets to train. spin The deepspin object. Limitations ----------- The currently implementation does not support the following features 1. type_one_side == False 2. exclude_types != [] 3. spin is not None References ---------- .. [1] Linfeng Zhang, Jiequn Han, Han Wang, Wissam A. Saidi, Roberto Car, and E. Weinan. 2018. End-to-end symmetry preserving inter-atomic potential energy model for finite and extended systems. In Proceedings of the 32nd International Conference on Neural Information Processing Systems (NIPS'18). Curran Associates Inc., Red Hook, NY, USA, 4441-4451. """ def __init__( self, rcut: float, rcut_smth: float, sel: List[int], neuron: List[int] = [24, 48, 96], axis_neuron: int = 8, resnet_dt: bool = False, trainable: bool = True, type_one_side: bool = True, exclude_types: List[List[int]] = [], env_protection: float = 0.0, set_davg_zero: bool = False, activation_function: str = "tanh", precision: str = DEFAULT_PRECISION, spin: Optional[Any] = None, # consistent with argcheck, not used though seed: Optional[int] = None, ) -> None: ## seed, uniform_seed, multi_task, not included. if spin is not None: raise NotImplementedError("spin is not implemented") self.rcut = rcut self.rcut_smth = rcut_smth self.sel = sel self.ntypes = len(self.sel) self.neuron = neuron self.axis_neuron = axis_neuron self.resnet_dt = resnet_dt self.trainable = trainable self.type_one_side = type_one_side self.env_protection = env_protection self.set_davg_zero = set_davg_zero self.activation_function = activation_function self.precision = precision self.spin = spin # order matters, placed after the assignment of self.ntypes self.reinit_exclude(exclude_types) in_dim = 1 # not considiering type embedding self.embeddings = NetworkCollection( ntypes=self.ntypes, ndim=(1 if self.type_one_side else 2), network_type="embedding_network", ) for embedding_idx in itertools.product( range(self.ntypes), repeat=self.embeddings.ndim ): self.embeddings[embedding_idx] = EmbeddingNet( in_dim, self.neuron, self.activation_function, self.resnet_dt, self.precision, ) self.env_mat = EnvMat(self.rcut, self.rcut_smth, protection=self.env_protection) self.nnei = np.sum(self.sel) self.davg = np.zeros( [self.ntypes, self.nnei, 4], dtype=PRECISION_DICT[self.precision] ) self.dstd = np.ones( [self.ntypes, self.nnei, 4], dtype=PRECISION_DICT[self.precision] ) self.orig_sel = self.sel
[docs] def __setitem__(self, key, value): if key in ("avg", "data_avg", "davg"): self.davg = value elif key in ("std", "data_std", "dstd"): self.dstd = value else: raise KeyError(key)
[docs] def __getitem__(self, key): if key in ("avg", "data_avg", "davg"): return self.davg elif key in ("std", "data_std", "dstd"): return self.dstd else: raise KeyError(key)
@property
[docs] def dim_out(self): """Returns the output dimension of this descriptor.""" return self.get_dim_out()
[docs] def get_dim_out(self): """Returns the output dimension of this descriptor.""" return self.neuron[-1] * self.axis_neuron
[docs] def get_dim_emb(self): """Returns the embedding (g2) dimension of this descriptor.""" return self.neuron[-1]
[docs] def get_rcut(self): """Returns cutoff radius.""" return self.rcut
[docs] def get_sel(self): """Returns cutoff radius.""" return self.sel
[docs] def mixed_types(self): """Returns if the descriptor requires a neighbor list that distinguish different atomic types or not. """ return False
[docs] def share_params(self, base_class, shared_level, resume=False): """ Share the parameters of self to the base_class with shared_level during multitask training. If not start from checkpoint (resume is False), some seperated parameters (e.g. mean and stddev) will be re-calculated across different classes. """ raise NotImplementedError
[docs] def get_ntypes(self) -> int: """Returns the number of element types.""" return self.ntypes
[docs] def compute_input_stats(self, merged: List[dict], path: Optional[DPPath] = None): """Update mean and stddev for descriptor elements.""" raise NotImplementedError
[docs] def cal_g( self, ss, embedding_idx, ): nf_times_nloc, nnei = ss.shape[0:2] ss = ss.reshape(nf_times_nloc, nnei, 1) # (nf x nloc) x nnei x ng gg = self.embeddings[embedding_idx].call(ss) return gg
[docs] def reinit_exclude( self, exclude_types: List[Tuple[int, int]] = [], ): self.exclude_types = exclude_types self.emask = PairExcludeMask(self.ntypes, exclude_types=exclude_types)
[docs] def call( self, coord_ext, atype_ext, nlist, mapping: Optional[np.ndarray] = None, ): """Compute the descriptor. Parameters ---------- coord_ext The extended coordinates of atoms. shape: nf x (nallx3) atype_ext The extended aotm types. shape: nf x nall nlist The neighbor list. shape: nf x nloc x nnei mapping The index mapping from extended to lcoal region. not used by this descriptor. Returns ------- descriptor The descriptor. shape: nf x nloc x (ng x axis_neuron) gr The rotationally equivariant and permutationally invariant single particle representation. shape: nf x nloc x ng x 3 g2 The rotationally invariant pair-partical representation. this descriptor returns None h2 The rotationally equivariant pair-partical representation. this descriptor returns None sw The smooth switch function. """ del mapping # nf x nloc x nnei x 4 rr, ww = self.env_mat.call(coord_ext, atype_ext, nlist, self.davg, self.dstd) nf, nloc, nnei, _ = rr.shape sec = np.append([0], np.cumsum(self.sel)) ng = self.neuron[-1] gr = np.zeros([nf * nloc, ng, 4], dtype=PRECISION_DICT[self.precision]) exclude_mask = self.emask.build_type_exclude_mask(nlist, atype_ext) # merge nf and nloc axis, so for type_one_side == False, # we don't require atype is the same in all frames exclude_mask = exclude_mask.reshape(nf * nloc, nnei) rr = rr.reshape(nf * nloc, nnei, 4) for embedding_idx in itertools.product( range(self.ntypes), repeat=self.embeddings.ndim ): if self.type_one_side: (tt,) = embedding_idx ti_mask = np.s_[:] else: ti, tt = embedding_idx ti_mask = atype_ext[:, :nloc].ravel() == ti mm = exclude_mask[ti_mask, sec[tt] : sec[tt + 1]] tr = rr[ti_mask, sec[tt] : sec[tt + 1], :] tr = tr * mm[:, :, None] ss = tr[..., 0:1] gg = self.cal_g(ss, embedding_idx) gr_tmp = np.einsum("lni,lnj->lij", gg, tr) gr[ti_mask] += gr_tmp gr = gr.reshape(nf, nloc, ng, 4) # nf x nloc x ng x 4 gr /= self.nnei gr1 = gr[:, :, : self.axis_neuron, :] # nf x nloc x ng x ng1 grrg = np.einsum("flid,fljd->flij", gr, gr1) # nf x nloc x (ng x ng1) grrg = grrg.reshape(nf, nloc, ng * self.axis_neuron).astype( GLOBAL_NP_FLOAT_PRECISION ) return grrg, gr[..., 1:], None, None, ww
[docs] def serialize(self) -> dict: """Serialize the descriptor to dict.""" if not self.type_one_side and self.exclude_types: for embedding_idx in itertools.product(range(self.ntypes), repeat=2): # not actually used; to match serilization data from TF to pass the test if embedding_idx in self.emask: self.embeddings[embedding_idx].clear() return { "@class": "Descriptor", "type": "se_e2_a", "@version": 1, "rcut": self.rcut, "rcut_smth": self.rcut_smth, "sel": self.sel, "neuron": self.neuron, "axis_neuron": self.axis_neuron, "resnet_dt": self.resnet_dt, "trainable": self.trainable, "type_one_side": self.type_one_side, "exclude_types": self.exclude_types, "env_protection": self.env_protection, "set_davg_zero": self.set_davg_zero, "activation_function": self.activation_function, # make deterministic "precision": np.dtype(PRECISION_DICT[self.precision]).name, "spin": self.spin, "env_mat": self.env_mat.serialize(), "embeddings": self.embeddings.serialize(), "@variables": { "davg": self.davg, "dstd": self.dstd, }, }
@classmethod
[docs] def deserialize(cls, data: dict) -> "DescrptSeA": """Deserialize from dict.""" data = copy.deepcopy(data) check_version_compatibility(data.pop("@version", 1), 1, 1) data.pop("@class", None) data.pop("type", None) variables = data.pop("@variables") embeddings = data.pop("embeddings") env_mat = data.pop("env_mat") obj = cls(**data) obj["davg"] = variables["davg"] obj["dstd"] = variables["dstd"] obj.embeddings = NetworkCollection.deserialize(embeddings) return obj
@classmethod
[docs] def update_sel(cls, global_jdata: dict, local_jdata: dict): """Update the selection and perform neighbor statistics. Parameters ---------- global_jdata : dict The global data, containing the training section local_jdata : dict The local data refer to the current class """ local_jdata_cpy = local_jdata.copy() return UpdateSel().update_one_sel(global_jdata, local_jdata_cpy, False)