Source code for deepmd.fit.dipole

# SPDX-License-Identifier: LGPL-3.0-or-later
from typing import (
    List,
    Optional,
)

import numpy as np

from deepmd.common import (
    cast_precision,
    get_activation_func,
    get_precision,
)
from deepmd.env import (
    tf,
)
from deepmd.fit.fitting import (
    Fitting,
)
from deepmd.loss.loss import (
    Loss,
)
from deepmd.loss.tensor import (
    TensorLoss,
)
from deepmd.utils.graph import (
    get_fitting_net_variables_from_graph_def,
)
from deepmd.utils.network import (
    one_layer,
    one_layer_rand_seed_shift,
)


[docs]@Fitting.register("dipole") class DipoleFittingSeA(Fitting): r"""Fit the atomic dipole with descriptor se_a. Parameters ---------- descrpt : tf.Tensor The descrptor neuron : List[int] Number of neurons in each hidden layer of the fitting net resnet_dt : bool Time-step `dt` in the resnet construction: y = x + dt * \phi (Wx + b) sel_type : List[int] The atom types selected to have an atomic dipole prediction. If is None, all atoms are selected. seed : int Random seed for initializing the network parameters. activation_function : str The activation function in the embedding net. Supported options are |ACTIVATION_FN| precision : str The precision of the embedding net parameters. Supported options are |PRECISION| uniform_seed Only for the purpose of backward compatibility, retrieves the old behavior of using the random seed """ def __init__( self, descrpt: tf.Tensor, neuron: List[int] = [120, 120, 120], resnet_dt: bool = True, sel_type: Optional[List[int]] = None, seed: Optional[int] = None, activation_function: str = "tanh", precision: str = "default", uniform_seed: bool = False, **kwargs, ) -> None: """Constructor.""" self.ntypes = descrpt.get_ntypes() self.dim_descrpt = descrpt.get_dim_out() self.n_neuron = neuron self.resnet_dt = resnet_dt self.sel_type = sel_type if self.sel_type is None: self.sel_type = list(range(self.ntypes)) self.sel_mask = np.array( [ii in self.sel_type for ii in range(self.ntypes)], dtype=bool ) self.seed = seed self.uniform_seed = uniform_seed self.seed_shift = one_layer_rand_seed_shift() self.fitting_activation_fn = get_activation_func(activation_function) self.fitting_precision = get_precision(precision) self.dim_rot_mat_1 = descrpt.get_dim_rot_mat_1() self.dim_rot_mat = self.dim_rot_mat_1 * 3 self.useBN = False self.fitting_net_variables = None self.mixed_prec = None
[docs] def get_sel_type(self) -> int: """Get selected type.""" return self.sel_type
[docs] def get_out_size(self) -> int: """Get the output size. Should be 3.""" return 3
def _build_lower(self, start_index, natoms, inputs, rot_mat, suffix="", reuse=None): # cut-out inputs inputs_i = tf.slice(inputs, [0, start_index, 0], [-1, natoms, -1]) inputs_i = tf.reshape(inputs_i, [-1, self.dim_descrpt]) rot_mat_i = tf.slice(rot_mat, [0, start_index, 0], [-1, natoms, -1]) rot_mat_i = tf.reshape(rot_mat_i, [-1, self.dim_rot_mat_1, 3]) layer = inputs_i for ii in range(0, len(self.n_neuron)): if ii >= 1 and self.n_neuron[ii] == self.n_neuron[ii - 1]: layer += one_layer( layer, self.n_neuron[ii], name="layer_" + str(ii) + suffix, reuse=reuse, seed=self.seed, use_timestep=self.resnet_dt, activation_fn=self.fitting_activation_fn, precision=self.fitting_precision, uniform_seed=self.uniform_seed, initial_variables=self.fitting_net_variables, mixed_prec=self.mixed_prec, ) else: layer = one_layer( layer, self.n_neuron[ii], name="layer_" + str(ii) + suffix, reuse=reuse, seed=self.seed, activation_fn=self.fitting_activation_fn, precision=self.fitting_precision, uniform_seed=self.uniform_seed, initial_variables=self.fitting_net_variables, mixed_prec=self.mixed_prec, ) if (not self.uniform_seed) and (self.seed is not None): self.seed += self.seed_shift # (nframes x natoms) x naxis final_layer = one_layer( layer, self.dim_rot_mat_1, activation_fn=None, name="final_layer" + suffix, reuse=reuse, seed=self.seed, precision=self.fitting_precision, uniform_seed=self.uniform_seed, initial_variables=self.fitting_net_variables, mixed_prec=self.mixed_prec, final_layer=True, ) if (not self.uniform_seed) and (self.seed is not None): self.seed += self.seed_shift # (nframes x natoms) x 1 * naxis final_layer = tf.reshape( final_layer, [tf.shape(inputs)[0] * natoms, 1, self.dim_rot_mat_1] ) # (nframes x natoms) x 1 x 3(coord) final_layer = tf.matmul(final_layer, rot_mat_i) # nframes x natoms x 3 final_layer = tf.reshape(final_layer, [tf.shape(inputs)[0], natoms, 3]) return final_layer
[docs] @cast_precision def build( self, input_d: tf.Tensor, rot_mat: tf.Tensor, natoms: tf.Tensor, input_dict: Optional[dict] = None, reuse: Optional[bool] = None, suffix: str = "", ) -> tf.Tensor: """Build the computational graph for fitting net. Parameters ---------- input_d The input descriptor rot_mat The rotation matrix from the descriptor. natoms The number of atoms. This tensor has the length of Ntypes + 2 natoms[0]: number of local atoms natoms[1]: total number of atoms held by this processor natoms[i]: 2 <= i < Ntypes+2, number of type i atoms input_dict Additional dict for inputs. reuse The weights in the networks should be reused when get the variable. suffix Name suffix to identify this descriptor Returns ------- dipole The atomic dipole. """ if input_dict is None: input_dict = {} type_embedding = input_dict.get("type_embedding", None) atype = input_dict.get("atype", None) nframes = input_dict.get("nframes") start_index = 0 inputs = tf.reshape(input_d, [-1, natoms[0], self.dim_descrpt]) rot_mat = tf.reshape(rot_mat, [-1, natoms[0], self.dim_rot_mat]) if type_embedding is not None: nloc_mask = tf.reshape( tf.tile(tf.repeat(self.sel_mask, natoms[2:]), [nframes]), [nframes, -1] ) atype_nall = tf.reshape(atype, [-1, natoms[1]]) # (nframes x nloc_masked) self.atype_nloc_masked = tf.reshape( tf.slice(atype_nall, [0, 0], [-1, natoms[0]])[nloc_mask], [-1] ) ## lammps will make error self.nloc_masked = tf.shape( tf.reshape(self.atype_nloc_masked, [nframes, -1]) )[1] atype_embed = tf.nn.embedding_lookup(type_embedding, self.atype_nloc_masked) else: atype_embed = None self.atype_embed = atype_embed if atype_embed is None: count = 0 outs_list = [] for type_i in range(self.ntypes): if type_i not in self.sel_type: start_index += natoms[2 + type_i] continue final_layer = self._build_lower( start_index, natoms[2 + type_i], inputs, rot_mat, suffix="_type_" + str(type_i) + suffix, reuse=reuse, ) start_index += natoms[2 + type_i] # concat the results outs_list.append(final_layer) count += 1 outs = tf.concat(outs_list, axis=1) else: inputs = tf.reshape( tf.reshape(inputs, [nframes, natoms[0], self.dim_descrpt])[nloc_mask], [-1, self.dim_descrpt], ) rot_mat = tf.reshape( tf.reshape(rot_mat, [nframes, natoms[0], self.dim_rot_mat_1 * 3])[ nloc_mask ], [-1, self.dim_rot_mat_1, 3], ) atype_embed = tf.cast(atype_embed, self.fitting_precision) type_shape = atype_embed.get_shape().as_list() inputs = tf.concat([inputs, atype_embed], axis=1) self.dim_descrpt = self.dim_descrpt + type_shape[1] inputs = tf.reshape(inputs, [nframes, self.nloc_masked, self.dim_descrpt]) rot_mat = tf.reshape( rot_mat, [nframes, self.nloc_masked, self.dim_rot_mat_1 * 3] ) final_layer = self._build_lower( 0, self.nloc_masked, inputs, rot_mat, suffix=suffix, reuse=reuse ) # nframes x natoms x 3 outs = tf.reshape(final_layer, [nframes, self.nloc_masked, 3]) tf.summary.histogram("fitting_net_output", outs) return tf.reshape(outs, [-1])
# return tf.reshape(outs, [tf.shape(inputs)[0] * natoms[0] * 3 // 3])
[docs] def init_variables( self, graph: tf.Graph, graph_def: tf.GraphDef, suffix: str = "", ) -> None: """Init the fitting net variables with the given dict. Parameters ---------- graph : tf.Graph The input frozen model graph graph_def : tf.GraphDef The input frozen model graph_def suffix : str suffix to name scope """ self.fitting_net_variables = get_fitting_net_variables_from_graph_def( graph_def, suffix=suffix )
[docs] def enable_mixed_precision(self, mixed_prec: Optional[dict] = None) -> None: """Reveive the mixed precision setting. Parameters ---------- mixed_prec The mixed precision setting used in the embedding net """ self.mixed_prec = mixed_prec self.fitting_precision = get_precision(mixed_prec["output_prec"])
[docs] def get_loss(self, loss: dict, lr) -> Loss: """Get the loss function. Parameters ---------- loss : dict the loss dict lr : LearningRateExp the learning rate Returns ------- Loss the loss function """ return TensorLoss( loss, model=self, tensor_name="dipole", tensor_size=3, label_name="dipole", )